Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
токсиканты вопрос 27.doc
Скачиваний:
8
Добавлен:
08.05.2019
Размер:
929.79 Кб
Скачать

5. Специфический транспорт веществ через биологические барьеры

Хорошая проницаемость ряда биологических барьеров для нерастворимых в липидах веществ объясняется наличием транспортных систем (транслоказ, транспортных белков и т.д.), которые осуществляют их специфический перенос через мембраны.

Эволюционно специфический транспорт возник из физиологических процессов переноса через мембраны относительно простых, жизненно необходимых клетке молекул, например глюкозы, аминокислот и т.д. Для транспорта токсикантов этот механизм не является ведущим. Тем не менее, путем специфического транспорта в клетку могут поступать токсичные вещества - аналоги естественных метаболитов (например, пуриновых и пиримидиновых оснований, сахаров, аминокислот и т.д.). Специфический транспорт веществ через мембраны напоминает ферментативную реакцию. К числу объединяющих эти явления свойств относятся, в частности, общие закономерности реализации процессов, кинетические характеристики, существенно отличающиеся от кинетики простой диффузии (таблица 5).

Таблица 5. Признаки специфического транспорта

1. Связывание ксенобиотика с наружной поверхностью мембраны и молекулой-носителем;

2. Транслокация связавшегося вещества через мембрану специальным носителем;

3. Высвобождение вещества из связи с носителем внутри клетки;

4. Субстратная специфичность взаимодействия вещества с носителем;

5. Кинетика процесса, описываемая гиперболой (наличие максимальной скорости процесса - Vmax, и константы процесса - Km);

6. Наличие веществ, избирательно блокирующих процесс;

7. Более высокая скорость процесса в сравнении с процессом диффузии.

Некоторые ксенобиотики могут изменять активность и свойства молекул-переносчиков и, тем самым, влиять на течение естественных физиологических процессов. Т.е. механизм токсического действия веществ может быть связан с нарушением свойств молекул переносчиков (атрактилозид - нарушает транспорт АТФ через мембрану митоходнрий).

5.1. Активный транспорт

Активный транспорт - это процесс переноса химических веществ через биологическую мембрану против градиента его концентрации. Процесс всегда сопряжен с расходованием энергии и протекает in vivo в одном направлении. Различают первичный и вторичный активный транспорт.

Первичный активный транспорт - это процесс, при котором энергия макроэргов (АТФ) непосредственно расходуется на перемещение молекулы или иона через мембрану. В молекулах эукариотов известны, по крайней мере, четыре типа таких процессов, известные, как ионные насосы: Na+/K+ АТФ-аза; Са2+ АТФ-аза; Н++ АТФ-аза; Н+ АТФ-аза.

Вторичный активный транспорт состоит из двух структурно разделенных транспортных механизмов: первичной активно-транспортной системы, например транспорта Na+, нуждающейся в АТФ, и сопряженного процесса каталитической диффузии другого вещества в противоположном направлении, например транспорт сахаров или аминокислот.

5.2. Каталитическая (облегченная) диффузия

Отличие этого процесса от активного транспорта состоит в том, что перенос вещества через мембрану осуществляется по градиенту концентрации. После уравнивания концентрации вещества по обе стороны мембраны процесс транспорта прекращается. В отличие от простой диффузии, облегченная осуществляется с большей скоростью, для нее характерна насыщаемость и структурная специфичность. Этот процесс также связан с расходованием энергии. Процесс поступления глюкозы в эритроциты происходит по этому механизму.

5.3. Транспорт веществ путем образования мембранных везикул

Процесс транспорта веществ через мембраны путем образования везикул, содержащих эти вещества, называется цитозом. На основе данных гистологических исследований выделяют несколько видов цитоза (таблица 6): эндоцитоз, экзоцитоз, трансцитоз, синцитоз, интрацитоз.

Таблица 6. Транспорт веществ путем цитозов

1. Эндоцитозы: захват вещества клеткой

1.1. Фагоцитоз: захват корпускулярных частиц

1.2. Пиноцитоз: захват капель жидкости и растворенных в ней молекул

1.3. Рецептор-обусловленный эндоцитоз: связывание макромолекул на специфических рецепторах клеточной мембраны с последующим образованием шероховатых везикул

2. Экзоцитзы: выделение веществ из клетки

2.1. Гранулокринная секреция: выделение везикул, содержащих клеточное вещество

2.2. Отпочковывание: выделение части цитоплазмы содержащихся в ней веществ путем краевого отделения части клетки

3. Трансцитоз (цитопемзис): транспорт веществ через объем клетки

4. Синцитозы

4.1. Слияние клеток

4.2. Слияние клеток липидными везикулами, содержащими вещества

5. Интрацитоз: образование везикул и их слияние внутри клетки

Путем фагоцитоза клетка захватывает большие частицы или макромолекулярные комплексы. При контакте с клеточной мембраной объект начинает погружаться в клетку, пока полностью не захватывается ею. Отшнуровавшаяся от клеточной мембраны везикула, содержащая частицы, перемещается в цитоплазму. Размеры везикулы и содержащейся в ней частицы могут составлять несколько микрон. Таким способом, например, легочные макрофаги захватывают частицы водо-нерастворимых, чужеродных веществ (металлическая, угольная пыль и т.д.) попавшие в дыхательные пути.

Под пинозитозом понимают захват клеткой капель жидкостей. Капли жидкости, с растворенными в ней веществами, окружаются клеточной мембраной; в результате образуются везикулы с диаметром около 0,1 мкм.

Рецептор-обусловленный эндоцитоз - высоко специфичный транспортный процесс. В качестве рецепторов к веществам выступают ассоциированные с мембранами гликопротеиды со специфичным участком связывания определенного лиганда, например белка. Вследствие специфичности взаимодействия появляется возможность из большого числа протеинов, находящихся в среде выбирать лишь отдельные и обеспечивать их транспорт даже в том случае, если их концентрация низка. Связывание вещества с рецептором побуждает мембрану к образованию везикулы, которая погружается в цитоплазму. После её взаимодействия с мембраной лизосом, везикула разрушается, а содержащийся в ней лиганд, выходит в цитоплазму. Рецептор, связанный с везикулой обратно встраивается в структуру клеточной мембраны, т.е. осуществляется рециркуляция рецептора. В норме путем рецептор-обусловленного эндоцитоза в клетку поступают гормоны (например, инсулин) и другие высокомолекулярные вещества, регулирующие её метаболизм, железо, в связанной с трансферином форме и т.д. Этим же способом в клетку проникают некоторые токсины белковой природы, например тетанотоксин, ботулотоксин. Как полагают, в основе токсического действия ботулотоксина лежит его способность повреждать процесс взаимодействия синаптических везикул, содержащих ацетилхолин, с аксолемой, что сопровождается нарушением экзоцитоза нейромедиатора. Токсин действует, попав внутрь нервного окончания, путем рецептор-обусловленного эндоцитоза.

Рецепторы эндоцитоза представляют собой сложные протеины, липофильная часть молекулы которых связана с липидной мембраной, а гидрофильные части обращены внутрь и наружу клетки. Так, рецепторы трансферина представляют собой гликопротеид с молекулярной массой около 180000 Д. Он состоит их двух практически идентичных полипептидных цепей, включающих около 800 аминокислот каждая. Эти цепи связаны дисульфидной связью. Рецепторы имеют высокое сродство к лиганду. Константа диссоциации равна 5 нМ. На поверхности клеток насчитывается до 50000 мест связывания трансферина.

Эндоцитоз представляет собой динамичный процесс. В течение одного часа клетка может путем рецептор-обусловленного эндоцитоза, фаго- и пиноцитоза обновить всю клеточную мембрану. Каким образом, не смотря на постоянное движение частей мембраны между различными органеллами, сохраняется её целостность, остается не известно.

  << Содержание

 




С. А. КУЦЕНКО  ОСНОВЫ ТОКСИКОЛОГИИ,   Санкт-Петербург,   2002

  << Содержание

 

ГЛАВА 4.3. РАСПРЕДЕЛЕНИЕ КСЕНОБИОТИКОВ В ОРГАНИЗМЕ

После резорбции в кровь вещество в соответствии с градиентом концентрации распределяется по всем органам и тканям. Распределение - динамический процесс, его направленность во многом определяется соотношением содержания ксенобиотика во внешней среде, на месте аппликации, в крови и тканях. По большей части вещества распределяются в организме неравномерно. Неодинаково и время пребывания ксенобиотиков в различных органах и тканях. Некоторые избирательно накапливаются в том или ином органе, ткани, даже клетках определенного типа. Так, ботулотоксин избирательно связывается с нервными окончаниями холинэргических нервных волокон, 6-гидроксидофамин - накапливается в катехоламинэргических нейронах ЦНС, свинец, стронций - в костях и т.д. Причем если время нахождения первых двух токсикантов в соответствующих клетках насчитывает несколько часов - суток, то последние агенты могут сохраняться в костной ткани годами. Однако строение, физические свойства и химически состав клеток во многом одинаковы, поэтому такое неравномерное распределение ксенобиотика в организме или избирательное накопление в отдельных тканях встречается не так часто.

Токсический процесс далеко не всегда характеризуется повреждением именно тех структур, в которых вещество накапливается в наибольшем количестве. Выраженность токсического эффекта пропорциональна концентрации ксенобиотика в месте действия на биологически значимую "структуру-мишень". Для того, чтобы эффект был сильным необходима высокая концентрация вещества в "биофазе" чувствительных рецепторов. Например, чтобы вызвать отравление, в основе которого лежит нарушение деятельности сердца, буфотоксин должен накопиться в сердечной мышце. Его содержание в мозге, печени, поджелудочной железе практически не имеет значение для развития острого токсического процесса. При интоксикации диэтиламидом лизергиновой кислоты (ДЛК) менее 1% вещества поступает в мозг, но именно со стороны ЦНС выявляются изменения, составляющие основу острого отравления. Свинец, накопившийся в костях, практически не обладает биологической активностью.

1. Принципы распределения

На процесс перехода токсикантов из крови в ткани (и наоборот) влияют следующие структурно-функциональные особенности органов:

- свойства стенок их капиллярного русла;

- степень вазкуляризации и интенсивность кровоснабжения органов;

- свойства клеток, формирующих орган, и особенно клеточных мембран;

- кислотно-основные свойства тканей;

- степень сродства молекулярных элементов тканей к токсикантам.

На характер распределения ксенобиотиков в организме, кроме того, оказывают влияние вид животного, его пол, возраст и др.

1.1. Проникновение веществ через стенку капилляра

Водо-растворимое вещество, циркулирующее в крови, не диффундирует в ткани, если радиус молекулы превышает радиус пор стенки капилляров. Как правило, это случается с высокомолекулярными соединениями: токсикантами белковой природы и т.д. (см. выше). Такое же исключительно внутрисосудистое распределение характерно для низкомолекулярных веществ, если в крови они образуют большие агломераты частиц или связываются с белками плазмы крови. Как уже указывалось, в различных органах стенки капилляров имеют различные свойства, а следовательно и различную проницаемость для химических веществ.

1.2. Значение особенностей кровоснабжения органов

Распределение токсикантов в первые минуты - часы после их поступления в организм, до достижения стационарной фазы, в значительной степени определяется характером кровоснабжения органов.

Объем крови, протекающей через различные органы в единицу времени далеко не одинаков (рисунок 1).

Рисунок 1. Интенсивность кровоснабжения различных органов и тканей

Количество диффундирующего из крови в ткань вещества определяется суммарной площадью капиллярного русла ткани. Для различных органов и тканей площадь капиллярного русла также не одинакова (таблица 1).

Таблица 1. Площадь капиллярного русла различных органов собаки (см2/г ткани)

Мозг

Почки

Печень

Легкие

Мышцы

240

350

250

250

70

Более того, даже внутри одного и того же органа степень вазкуляризации отдельных участков может существенным образом различаться. Так, средняя длина капиллярного русла (в мкм) на 100 мкм3 сырой ткани мозга крысы составляет:

N. paraventricularis - 2023

N. supraopticus - 1960

Cortex - 1000

др. отделы гипоталамуса - 180 - 500

Сразу после введения вещества попадают в органы, богато снабжаемые кровью. Однако в дальнейшем они перераспределяются в соответствии с другими свойствами тканей, например, наличием специальных механизмов захвата веществ, высоким содержание структур, связывающих ксенобиотик и соотношением жира и воды в органе или ткани. Так, в первые минуты после внутривенного введения собаке 25 мг/кг тиопентала, вещество в большом количестве определяется в печени (до 90%) и практически отсутствует в жировой ткани. Однако уже через 3 часа в печени и жире содержится примерно одинаковое (до 30%) количество вещества (B.B. Brodie, C.A.M. Hogben, 1957).

Конечное распределение токсикантов, длительно сохраняющихся в организме, не зависит от особенностей кровоснабжения органов.