Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
lec_MO_4-6.doc
Скачиваний:
2
Добавлен:
20.04.2019
Размер:
217.09 Кб
Скачать

Идея симплекс метода.

Симплекс метод является универсальным.

Симплекс метод – аналитический метод.

  1. Находятся первоначальное, опорное решение. А)система ограничений должна быть записана в виде равенств (каноническая форма)

Б)Преобразовать что бы bi >=0 i=1,m

С)Привести систему к единичному базисному виду с неотрицательной правой частью.

Поэтому за разрешающий элемент выбирается строго положительный элемент.

Д)Приравниваем свободные к 0 , получаем первоначальное базисное неотрицательное

решение, которое является опорным решением данной задачи и соответствует вершине.

  1. Рассматривая функцию цели выясняем является ли полученное решение оптимальным.

  2. Если полученное решение не является оптимальным , то необходимо перейти к следующей вершине (опорному решению) Переход осуществляется по определенному правилу по которому : только одна изи базисных переменных должна перейти в свободную и только одна из свободных перейти в базисную.

Алгебра симплекс метода.

Х1

Х2

Х3

Х4

Х5

св.чл

1

0

1

6

2

8

0

1

1

0

3

9

0

0

7

-1

-3

-0

1

-2/3

1/3

6

0

2

0

1/3

1/3

0

1

3

0

1

8

-1

0

9

1/6

-2/18

1/18

1

1/3

0

1

-9

1/6

8/9

8 1/8

0

0

1/3

Особенность выделенная клетка.

  1. Чтобы решать симплекс методом необходимо Z->min (перейти к min)

  2. В строке Z записываются коэффициенты ф-ии цели, а свободный член записывается в выделенную клетку св.чл. с противоположным знаком.

  3. Сделаем свободные члены неотрицательными.

  4. Приводим систему ограничений к единичному базису методом Гауса, выбирая за разрешающий элемент положительный элемент.

  5. Функция цели должна быть выражена только через свободные неизвестные , чтобы определить оптимален ли полученный опорный план. Для определения опорного плана свободные элементы =0 r=(7;-1;-3} Среди них выбираем самый отрицательный и делаем разрешающий столбец. Для выбора разрешающей строки находится min-ое из отношений свободных членов системы ограничений к положительным коэффициентам разрешающего столбца

  6. Для выбора разрешающей строки находится min-ое из отношений свободных членов системы ограничений к положительным коэффициентам разрешающего столбца.

Альтернативный оптимум.

Предположим найдено оптимальное решение. r>=0. Признаком альтернативного оптимума в этом случаи является равенство 0, хотя бы одной из компонент вектора r. Покажем что если компонента rj =0 , для найденого оптимального плана (Х*1) то можно найти еще одно оптимальное решение Х*2 , значение в котором будет таким же как и значение в Х*1. Z(Х*2)= Z (Х*1)=Zmin

За разрешающий столбец берем rj =0 Zmin=Z(X*1)=-Q (свободный член в Z) Q1=aij*Q-bi*rj/aij = Q-(bi*rj/aij)=Q bi>0 aij>=0

Сделав шаг метода Гауса , получим новое решение , а значение функции в т Х*2 будет точно таким же как и в Х*2 – т.е. задача Альтернативного оптимума.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]