Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на вопросы по физике 1-54.doc
Скачиваний:
6
Добавлен:
18.04.2019
Размер:
1.21 Mб
Скачать

51. Уравнение бегущей волны

Бегущими волнами называются волны, которые переносят в пространстве энергию. Перенос энергии волнами количественно характеризуется вектором плотности потока энергии. Уравнение плоской одномерной синусоидальной волны: (Вместо синуса можно написать косинус.) Это уравнение отличается от уравнения синусоидальных колебаний тем, что колеблющая величина S зависит не только от времени, но и от координаты. Это и понятно: вместо одного маятника мы имеем множество связанных маятников - частиц среды. v - скорость распространения волны, А - амплитуда волны, аргумент синуса - фаза волны, j0 - начальная фаза колебаний в точке х = 0, w - частота (циклическая) волны.

Расстояние, на которое распространяется волна за время, равное периоду колебаний, называется ДЛИНОЙ ВОЛНЫ l = nT.ВОЛНОВОЕ ЧИСЛО k: С помощью введенного волнового числа уравнение волны запишется:

Если мы рассматриваем не одномерную волну, удобно наряду с волновым числом ввести ВОЛНОВОЙ ВЕКТОР k, модуль которого равен волновому числу, а направление совпадает с направлением луча (направлением распространения волны). В векторном виде уравнение волны будет выглядеть так:

здесь r - радиус вектор точки пространства; j0 - начальная фаза колебаний в начале координат.Уравнение сферической волны отличается тем, что амплитуда волны убывает с расстоянием от источника:

A0 = const по смыслу формулы есть амплитуда волны на единичном расстоянии от источника.Уравнение волны в дифференциальной форме обычно называют волновым уравнением; вид этого уравнения следующий:

или

Уравнение синусоидальной волны является решением волнового уравнения (можно проверить подстановкой). Общее же решение волнового уравнения следующее:

Здесь А и В - произвольные константы, а f1 и f2 - произвольные дважды дифференцируемые функции. Первое слагаемое описывает волну, распространяющуюся слева направо, второе - встречную волну.

52 Основные положения мкт: 3 основных положения молекулярно - кинетической теории:

I положение

Все тела (вещества) состоят из частиц (молекул, атомов, ионов...), между которыми есть промежутки.

Опытные обоснования.

- крошение вещества - испарение жидкостей - смешивание веществ; диффузия - фотографии туннельного микроскопа

II положение

Частицы находятся в постоянном, беспорядочном (хаотичном) движении (тепловое движение).

Опытные обоснования.

- испарение (вылет частиц с поверхности вещества) - диффузия

III положение

Частицы вещества взаимодействуют друг с другом: притягиваются на небольших расстояниях и отталкиваются, когда эти расстояния уменьшаются.

53. Уравнения состояния идеального газа Соотношение связывающее давление газа с его температурой и концентрацией молекул, получено в §3.2 для модели идеального газа, молекулы которого взаимодействуют между собой и со стенками сосуда только во время упругих столкновений. Это соотношение может быть записано в другой форме, устанавливающей связь между макроскопическими параметрами газа – объемом V, давлением p, температурой T и количеством вещества ν. Для этого нужно использовать равенства

Здесь N – число молекул в сосуде, NА – постоянная Авогадро, m – масса газа в сосуде, M – молярная масса газа. В итоге получим:

Произведение постоянной Авогадро NА на постоянную Больцмана k называется универсальной газовой постоянной и обозначается буквой R. Ее численное значение в СИ есть:

R = 8,31 Дж/моль·К.

Соотношение называется уравнением состояния идеального газа.

Для одного моля любого газа это соотношение принимает вид: pV=RT. p = nkT,