Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на вопросы по физике 1-35.docx
Скачиваний:
1
Добавлен:
18.04.2019
Размер:
409.17 Кб
Скачать

Физические основы Механики:

  • Разделы механики и их описание.

  • Кинематика

1.Что такое материальная точка?(материальное тело, абсолютно твёрдое тело)

Предмет механики. Механикой называют раздел физики, посвященный изучению закономерностей простейшей формы движения материи - механического движения.

Механика состоит из трех подразделов: кинематики, динамики и статики.

Кинематика изучает движение тел без учета причин, его вызывающих. Она оперирует такими величинами как перемещение, пройденный путь, время, скорость движения и ускорение.

Динамика исследует законы и причины, вызывающие движение тел, т.е. изучает движение материальных тел под действием приложенных к ним сил. К кинематическим величинам добавляются величины - сила и масса.

В статике исследуют условия равновесия системы тел. Статика излагается в специальных разделах механики и здесь отдельно рассматриваться не будет.

Механическим движением называется изменение взаимного расположения тел относительно друг друга в пространстве с течением времени. Любое механическое движение относительно.

Материальной точкой называется такое тело, размерами и формой которого можно пренебречь в сравнении с размерами других тел или расстояниями до них в условиях данной задачи.

Материа́льная то́чка — простейшая физическая модель в механике — математическая абстракция — тело, размеры которого допустимо считать бесконечно малыми по отношению к остальным объектам исследуемой задачи.

Практически под материальной точкой понимают обладающее массой тело, размерами и формой которого можно пренебречь при решении данной задачи.[1] Например, при расчёте пути, пройденного поездом, можно пренебречь его размерами, даже если путь измеряется сантиметрами.

При прямолинейном движении тела достаточно одной координатной оси для определения его положения.

2.Что такое вращение?Враще́ние — круговое движение объекта. В плоском пространстве объект вращается вокруг центра (или точки) вращения. В трёхмерном пространстве объект вращается вокруг линии, называемой осью. Если ось вращения расположена внутри тела, то говорят, что тело вращается само по себе или обладает спином, который имеет относительную скорость и может иметь момент импульса. Круговое движение относительно внешней точки, например, вращение Земли вокруг Солнца, называется орбитальным движением или, более точно, орбитальным вращением.

3. Что такое система отсчёта?(её составляющие)

Система отсчета. Под системой отсчета понимается совокупность системы координат и часов. Понятие системы отсчета, включает в себя пространственно-временную характеристику положения тела, при этом пространственная характеристика дается с помощью координат, а временная – с помощью часов.

4. Формула мгновенной скорости.

Мгновенная скорость есть первая производная пути по времени = v=(ds/dt)=s' где символы d/dt или штрих справа вверху у функции обозначают производную этой функции. Иначе - это скорость v =s/t при t, стремящимся к нулю... :) При отсутствии ускорения в момент измерения - мгновенная равна средней за время периода движения без ускорений Vмгн. = Vср. =S/t за этот период.Мгновенная скорость или скорость в данный момент времени. Если в выражении (1.5) перейти к пределу, устремляя к нулю, то мы получим выражение для вектора скорости м.т. в момент времени t прохождения ее через т.М траектории.

5. Что такое ускорение?(определение + формула)

Ускорение характеризует быстроту изменения скорости, т.е. изменение величины скорости за единицу времени.Вектор среднего ускорения. Отношение приращения скорости к промежутку времени , в течение которого произошло это приращение, выражает среднее ускорение:

Ускоре́ние (обычно обозначается , в теоретической механике ) — производная скорости по времени, векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени (т.е. ускорение учитывает не только изменение величины скорости, но и её направления).

Например, вблизи Земли падающее на Землю тело, в случае, когда можно пренебречь сопротивлением воздуха, увеличивает свою скорость примерно на 9,8 м/с каждую секунду, то есть, его ускорение равно 9,8 м/с².

Единицей ускорения служит метр в секунду за секунду (m/s2, м/с2), существует также внесистемная единица Гал (Gal), применяемая в гравиметрии и равная 1 см/с2.

6. Формула ускорения при криволинейном движении(по окружности)

При криволинейном движении даже с постоянной по модулю скоростью полное ускорение отлично от нуля. Это связано с тем, что при криволинейном движении тангенциальная составляющая скорости может не изменяться, но нормальная претерпевает изменения, т. е. всякое криволинейное движение — это движение ускоренное. Полное ускорение представляет собой сумму нормального и тангенциального ускорений.

Разложение ускорения по сопутствующему базису для движения в плоскости

Вектор ускорения можно разложить по сопутствующему базису :

,

где

  • — величина скорости,

  • — единичный касательный к траектории вектор, направленный вдоль скорости (касательный орт),

  • — орт главной нормали к траектории, который можно определить как единичный вектор в направлении ,

  • — орт бинормали к траектории,

  • R — радиус кривизны траектории.

, называемое бинормальным ускорением, всегда равно нулю. Это можно считать прямым следствием определения векторов : можно сказать, что они выбираются именно так, чтобы первый всегда совпадал с нормальным ускорением, второй же ортогонально первому.

Векторы и называются касательным (тангенциальным) и нормальным ускорениями соответственно.

Итак, учитывая сказанное выше, вектор ускорения всегда можно записать как:

Динамика

7. Силы инерции

Силы инерции — силы, обусловленные ускоренным движением неинерциальной системы отсчета (НСО) относительно инерциальной системы отсчета (ИСО). Основной закон динамики для неинерциальных систем отсчета: , где — сила, действующая на тело со стороны других тел;

— сила инерции, действующая на тело относительно поступательно движущейся НСО. — ускорение НСО относительно ИСО. Она появляется, например, в самолете при разгоне на взлетной полосе;

— центробежная сила инерции, действующая на тело относительно вращающейся НСО. — угловая скорость НСО относительно ИСО, — расстояние от тела до центра вращения;

— кориолисова сила инерции, действующая на тело, движущееся со скоростью относительно вращающейся НСО. — угловая скорость НСО относительно ИСО (вектор направлен вдоль оси вращения в соответствии с правилом правого винта).

Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции. Инерция — это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения, на тело необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность — это свойство тел сопротивляться изменению их текущего состояния. Величина инертности характеризуется массой тела.

8. Силы инерции при криволинейном движении(по окруж)

Инертность — способность сохранять свое состояние неизменным, это внутреннее свойство всех материальных тел. Сила инерции — сила, возникающая при разгоне или торможении тела (материальной точки) и направленная в обратную сторону от ускорения. Силу инерции можно измерить, она приложена к «связям» — телам, связанным с разгоняющимся или тормозящимся телом.

При вращательном движении (криволинейном) возникающее ускорение принято представлять в виде двух составляющих:нормального ап и касательного а, (Рис. 24.). Поэтому при рассмотрении криволинейного движения могут возникнуть две составляющие силы инерции: нормальная и касательная

При равномерном движении по дуге всегда возникает нормальное ускорение, касательное ускорение равно нулю, поэтому действует только нормальная составляющая силы инерции, направленная по радиусу из центра дуги.

9. Закон сохранения импульса(определение + формула в замкнутой системе)

Закон сохранения импульса является следствием второго и третьего законов Ньютона. Он имеет место в изолированной (замкнутой) системе тел.

Такой системой называется механическая система, на каждое из тел которой не действуют внешние силы. В изолированной системе проявляются внутренние силы, т.е. силы взаимодействия между телами, входящими в систему.

Так как в замкнутой системе внешние силы отсутствуют, то

или

(3.13)

Это равенство выражает закон сохранения импульса, согласно которому полный вектор импульса замкнутой системы тел с течением времени не изменяется.

Т.к. , то при любых процессах, происходящих в замкнутой системе, скорость ее центра инерции сохраняется неизменной.

Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, — однородность пространства.

Второй закон Ньютона можно записать в другой форме. Согласно определению:

,

тогда

или

Вектор называется импульсом или количеством движения тела и совпадает по направлению с вектором скорости , а выражает изменение вектора импульса.

Преобразуем последнее выражение к следующему виду:

(3.6)

Вектор называется импульсом силы .

Это уравнение является выражением основного закона динамики материальной точки: изменение импульса тела равно импульсу действующей на него силы.

  • Работа, энергия, мощность.

10.Определение энергии + закон сохранения энергии(определение)

Энегрия - наиболее универсальная величина для описания физических явлений. Э нергия - максимальное количество работы, которое способно совершить тело. Есть несколько видов энергии. Например, в механике: Потенциальная энергия тяготения, определяется высотой h. - Потенциальная энергия упругой деформации, определяется величиной деформации х. - Кинетическая энергия - энергия движения тел, определяется скоростью тела v. Энергия может передаваться от одних тел к другим, а также превращаться из одного вида в другой. - Полная механическая энергия. Закон сохранения энергии: в замкнутой системе тел полная энергия не изменяется при любых взаимодействиях внутри этой системы тел. Закон накладывает ограничения на протекание процессов в природе. Природа не допускает появление энергии ниоткуда и исчезание в никуда. Возможно оказывается только так: сколько одно тело теряет энергии, столько другое приобретает; сколько убывает одного вида энергии, столько к другому виду прибавляется. В механике для определения видов энергии необходимо обратить внимание на три величины: высоту подъема тела над Землей h, деформацию х, скорость тела v.

E (в других разделах физики W, U)- энергия, полная энергия тела

Дж

Ep - потенциальная энергия

Дж

Ek - кинетическая энергия

Дж

m - масса движущегося тела

кг

k - жесткость пружины

Н/м

x - величина растяжения (сжатия), деформация пружины

м

v - скорость тела

м/с

g =9,8 - ускорение свободного падения

м/с2

h - высота подъема тела

м

11.Определение работы + понятие поля силы + формула работы

Изменение механического движения и энергии тела происходит в процессе силового взаимодействия этого

тела с другими телами. Для количественной характеристики этого процесса в механике вводят понятие работы, совершаемой силой. Механическая работа — это физическая величина, являющаяся скалярной количественной мерой действия силы или сил на тело или систему, зависящая от численной величины и направления силы (сил) и от перемещения точки (точек) тела или системы[1].

Если рассматриваемая сила постоянна,а тело, к которому она приложена, движется поступательно и прямолинейно, то работой, совершаемой силой при прохождении телом пути , называют величину

(4.1)

где а - угол между силой и направлением движения тела.

Работа - скалярная величина. Если вектор силы и вектор перемещений образуют острый угол т.е. , то , если , то , т.е. сила, действующая перпендикулярно к перемещению тела, работы не совершает.

В общем случае тело может двигаться произвольным, достаточно сложным образом (рис.4.2). Выделим элементарный участок пути , на котором силу можно считать постоянной и перемещение прямолинейным. Элементарная работа на этом участке равна

(4.2)

Полная работа на пути определяется интегралом