Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
12 билет.doc
Скачиваний:
2
Добавлен:
17.04.2019
Размер:
692.22 Кб
Скачать

17. Билинейные и квадратичные формы. Сумма квадратов. Лагранж.

Заданная в линейном пространстве L над полем действитель­ных чисел функция двух переменных f(х,у), относящая каждой паре х,у векторов число f(х,у), называется билинейной функ­цией, или билинейным функционалом, если:

1) f(х,у + z) = f(х,у)+f(х,z); 2) f(_•х, у) = _ • f(х,у);

3) f(х + у,z) =f(х,2) + f(у,z); 4) f(х, _у) = _f(х, у),

где х,у,г - произвольные векторы из L, _ - любое действительное число.

в задан­ном базисе билинейный функционал представляется билинейной

формой, т.е. выражением вида Матрица A= (aik) называется матрицей этой билинейной формы. Билинейный функционал f(х, у) называется симметричным, если для всех х и у из L f(х,у) = f(у,х). Если в симметричной билинейной форме f(х,у) положить у = х, то получится квадратичная форма f(х, х). При этом матрица А квадратичной формы f(х, х) – это симметричная матрица А билинейной формы f(х,у},т.е. f(х,х) = хT Ах.

Теоp1. Пусть хT Ах - произвольная квадратичная форма в п-мерном линейном пространстве. Тогда найдется такой базис, в котором эта форма приводится к сумме квадратов (т.е. в ко­тором все коэффициенты при попарных произведениях координат вектора х равны нулю).Док-во. Воспользуемся индукцией по числу входя­щих в квадратичную форму переменных.

Положит опред. матрицы. Критерий «+»-ой определенности .

Квадратичная форма хTАх называется положительно (отрицательно) определенной, если хTАх > 0 ( хTАх < 0) при всех х≠ 0, и положительно (отрицательно) полу определенной, если хTАх > О (хTАх < 0) при всех х€L.

Если хтх - скалярное произведение в евклидовом простран­стве, то соответ-ствующая квадратичная форма хTЕх = ||х||2 явля­ется положит. oпределен-ной. Ясно, что положит опреде­ленная квадратич форма приводится к сумме квадратов с поло­жит коэффициентами, а положит полуопределенная форма - с неотрицат коэффициентами.

Теорема 3. Каждый из перечисленных ниже критериев явля­ется необходимым и достаточным условием положительной опре­деленности матрицы А:

а) хT Ах > 0 для всех ненулевых векторов х;

б) положительны все собственные значения _i матрицы А

в) положительны все главные угловые миноры матрицы А =

= (aik), т.е. Δ1 = det А1 = а11 > 0, Δ 2 =detА2 = Δ3= detA3= >0,…, Δ n=detAn=detA>0 (критерий Сильвестра);

г) положительны все ведущие элементы di в методе Гауса (без перестановок строк);

д) существует такая невырожденная матрица W, что А = WTW.

Положит опред матрицы. Критерии Сильвестра.

Квадратичная форма хTАх называется положительно (отрицательно) определенной, если хTАх > 0 ( хTАх < 0) при всех х≠ 0, и положительно (отрицательно) полу определенной, если хTАх > О (хTАх < 0) при всех х€L.

Если хтх - скалярное произведение в евклидовом простран­стве, то соответ-ствующая квадратичная форма хTЕх = ||х||2 явля­ется положит. oпределен-ной. Ясно, что положит опреде­ленная квадратич форма приводится к сумме квадратов с поло­жит коэффициентами, а положит полуопределенная форма - с неотрицат коэффициентами. критерий Сильвестра: положительны все главные угловые миноры матрицы А = (aik), т.е. Δ1 = det А1 = а11 > 0, Δ 2 =detА2 = Δ3= detA3= >0…. Δ n=detAn=detA>0

определитель любой матрицы равен произведению ее собственных значений. И т.к. все собственные значения _i положительны, то detA = _1,_2…_n>0. из положительной определенности А следует поло­жительная определенность всех Ak Рассмотрим все векторы х, по­следние п-k компо-нент которых равны нулю, т.е. векторы х= . Тогда xTAx=

2) Матрица обратима тогда, и только тогда, когда она невырождена. Док-во. Пусть А обратима => А*АТ=Е. detA*detA-1=detE=1 => detA≠0. Пусть detA≠0; A•A*=A*•A=det(A) •E => A• = • A=E, => A-1=

Положит опред матрицы. Собственные значения..

Квадратичная форма хTАх называется положительно (отрицательно) определенной, если хTАх > 0 ( хTАх < 0) при всех х≠ 0, и положительно (отрицательно) полу определенной, если хTАх > О (хTАх < 0) при всех х€L.

Если хтх - скалярное произведение в евклидовом простран­стве, то соответ-ствующая квадратичная форма хTЕх = ||х||2 явля­ется положит. oпределен-ной. Ясно, что положит опреде­ленная квадратич форма приводится к сумме квадратов с поло­жит коэффициентами, а положит полуопределенная форма - с неотрицат коэффициентами. Критерий: положительны все собственные значения _i матрицы А. Док-во: Пусть xi - нормированный собственный вектор А, соответствующий ее собственному значению _i. Тогда Ахi = _ixi и xTiAxi= xTi_ixi = _i, поскольку xTixi = 1. Тк, хTАх положи­тельно для всех х, то и для х = хi величина xTiAxi =_i также должна быть положительной и, следо-вательно, собственные значе­ния положительно определенной матрицы по-ложительны. Теперь пусть все _i > 0. Покажем, что хTАх > 0 для произ-воль­ного ненулевого вектора х, а не только для собственного вектора. Поскольку симметричная матрица обладает полным набором ортонорми-рованных собственных векторов, то любой вектор х может быть представ-лен в виде линейной комбинации с1х1 + с2х2 +…+спхп. Отсюда имеем Ах = c1Ax1+ с2Ах2 + ... + спАхп = с1_1х1 + с2_2х2 + ... + сn_nхn и в силу условия ортонормированности системы хi xТАx = (с1xT1 + с2xT2+ ... + сnxTn)( с1x1 + с2x2 + . . .+ сnxn) =c21_1 + c22_2 + ... + c2n_n. Если каждое _i > 0 и не все сi равны нулю, то хTАх > 0.

Положит опред матрицы. LU-разложение… (?)

Квадратичная форма хTАх называется положительно (отрицательно) определенной, если хTАх > 0 ( хTАх < 0) при всех х≠ 0, и положительно (отрицательно) полу определенной, если хTАх > О (хTАх < 0) при всех х€L.

Если хтх - скалярное произведение в евклидовом простран­стве, то соответ-ствующая квадратичная форма хTЕх = ||х||2 явля­ется положит. oпределен-ной. Ясно, что положит опреде­ленная квадратич форма приводится к сумме квадратов с поло­жит коэффициентами, а положит полуопределенная форма - с неотрицат коэффициентами. Критерий: положительны все ведущие элементы di в методе Гауса (без перестановок строк); Док-во: поскольку между опреде­лителями подматриц Аk и ведущими элементами имеется прямая связь k-й ведущий элемент dk является в точности отно­шением detAk к detAk-1. Таким образом, если все определители положительны, то все ведущие элементы также положительны и, следовательно, положительно определенные матрицы ни в каких перестановках строк не нуждаются. 2) из положительности ведущих элементов в методе Гаусса следует неравенство xTAx > 0. В методе исключения Гаусса для симме­тричной матрицы верхняя треугольная матрица U равна транспони­рованной к нижней треугольной матрице L и, следовательно, разло­жение А=LDU переходит в разложение А = LDLТ . Умножая эти выражения слева на хT, а справа на х, приходим к сумме квадратов, в которой коэффициентами являются ведущие элементы. По­ложительность ведущих элементов обеспечивает положительность выражения хTАх.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]