Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Двойной интеграл.doc
Скачиваний:
7
Добавлен:
15.04.2019
Размер:
1.32 Mб
Скачать
        1. Теоремы об оценке интеграла.

16.1.3.5.1. Если функция интегрируема по области , и для выполняется , то .

Док-во. (цифрами над знаками импликации обозначены номера применяемых ранее доказанных свойств).

16.1.3.5.2. Если функция интегрируема по области , то .

Док-во. Эти неравенства непосредственно следуют из того, что и свойства 16.1.3.4. Интегрирование неравенств.

16.1.3.6. Теорема о среднем. Если функция непрерывна на области , то существует точка , такая что .

Док-во. Непрерывная на ограниченной замкнутой области функция принимает в некоторых точках этой области своё минимальное и максимальное значения. Так как , то , или . Непрерывная функция принимает, кроме того, любое значение, заключённое между и , в частности, значение . Следовательно, , откуда и следует доказываемое утверждение.

      1. Вычисление двойного интеграла. Двукратный (повторный) интеграл.

        1. Определение простой (правильной) области. Область на плоскости Oxy будем называть простой (правильной) в направлении оси Oy, если любая прямая, проходящая через внутреннюю точку области и параллельная оси Oy, пересекает границу в двух точках.

Аналогично определяется область, простая (правильная) в направлении оси Ox: любая прямая, проходящая через внутреннюю точку области и параллельная оси Oх, пересекает границу в двух точках.

Область, правильную (простую) в направлении обеих осей, будем называть правильной.

О граниченную замкнутую область , правильную в направлении оси Oy, можно описать неравенствами . Числа и существуют вследствие ограниченности области , функция образована нижними точками пересечения прямой при с границей области , функция - верхними точками пересечения этой прямой с границей области :

Аналогичным образом область , ограниченную, замкнутую и правильную в направлении оси Oх, можно описать неравенствами . Функция образована левыми точками пересечения прямой при с границей области , функция - правыми точками пересечения этой прямой с границей области .

Для правильной области (т.е. области, правильной в направлении обеих осей) существуют оба способа представления: и , и .

        1. Двукратный (повторный) интеграл. Пусть - область, простая в направлении оси Oy. Рассмотрим выражение . Эта конструкция определяется через два обычных определённых интеграла. После интегрирования по у во внутреннем интеграле (переменная х при этом рассматривается как постоянная) и подстановки по у в пределах от до получается функция, зависящая только от х, которая интегрируется в пределах от a до b. В дальнейшем мы будем обычно записывать этот объект без внутренних скобок:

.

Можно показать, что двукратный интеграл обладает всеми свойствами двойного интеграла:

Свойства линейности и интегрирования неравенств следуют из этих свойств определённого интеграла; интеграл от единичной функции даёт площадь области : ;

т еоремы об оценке и о среднем следуют из перечисленных свойств. Единственное свойство, с которым придётся повозиться - это свойство аддитивности. Мы докажем его в простой, но достаточной для нас форме: если область разбита на две подобласти и прямой, параллельной одной из координатных осей, то двукратный интеграл по области равен сумме интегралов по и : .

Первый случай: прямая параллельна оси Oy. Тогда (аддитивность внешнего интеграла) .

Второй случай: прямая параллельна оси Oх. Воспользуемся сначала аддитивностью внешнего интеграла:

(теперь применим свойство аддитивности для внутреннего интеграла в среднем слагаемом) = (применяем свойство линейности для внешнего интеграла в среднем слагаемом и перегруппировываем сумму)=

(первая фигурная скобка даёт повторный интеграл по , второй - по ) .

Понятно, что воэможны различные случаи взаимного расположения прямых , , и функций , , но логика доказательства во всех случаях такая же.

Обобщим доказанное свойство. Пусть прямая разбивает область на две подобласти и . Проведём ещё одну прямую, параллельную какой-либо координатной оси. Пусть эта прямая разбивает на и ; - на и . По доказанному, , , поэтому . Продолжая рассуждать также, убеждаемся в справедливости следующего утверждения: если область с помощью прямых, параллельных координатным осям, разбита на подобласти , то .

        1. Теорема о переходе от двойного интеграла к повторному. Пусть - простая в направлении оси Oy область. Тогда двойной интеграл от непрерывной функции по области равна повторному интегралу от той же функции по области : .

Док-во. Разобьём область с помощью прямых, параллельных координатным осям, на подобласти . По доказанному выше, . К каждому из итегралов применим теорему о среднем: в любой области найдётся точка такая, что . Следовательно, . В последнем равенстве справа стоит интегральная сумма для двойного интеграла . Будем мельчить разбиение области так, чтобы . Вследствие непрерывности функции по теореме существования интегральная сумма при этом стремится к двойному интегралу , т.е. в пределе получим , что и требовалось доказать.

Если область правильная в направлении оси Oх, то аналогично доказывается формула . Если правильна в направлении обеих осей, то для вычисления двойного интеграла можно применять любую из эти формул: .

Если область не является правильной, её разбивают на правильные подобласти.