Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Двойной интеграл.doc
Скачиваний:
6
Добавлен:
15.04.2019
Размер:
1.32 Mб
Скачать

16. Кратные, криволинейные, поверхностные интегралы.

16.1. Двойной интеграл.

16.1.1. Определение двойного интеграла. Теорема существования двойного интеграла. Пусть на плоскости Oxy задана ограниченная замкнутая область D с кусочно-гладкой границей, и пусть на области D определена функция .

Разобьём область D произвольным образом на подобластей (не имеющих общих внутренних точек). Символом будем обозначать площадь области ; символом здесь и дальше будет обозначаться наибольшее расстояние между двумя точками, принадлежащими области D:

;

символом обозначим наибольший из диаметров областей : .

В каждой из подобластей выберем произвольную точку , вычислим в этой точке значение функции , и составим интегральную сумму .

Если существует предел последовательности интегральных сумм при , не зависящий ни от способа разбиения области D на подобласти , ни от выбора точек , то функция называется интегрируемой по области D, а значение этого предела называется двойным интегралом от функции по области D и обозначается .

Если расписать значение через координаты точки , и представить как , получим другое обозначение двойного интеграла: . Итак, кратко, .

Теорема существования двойного интеграла. Если подынтегральная функция непрерывна на области D, то она интегрируема по этой области.

16.1.2. Геометрический смысл двойного интеграла. Геометрический смысл каждого слагаемого интегральной суммы: если , то - объём прямого цилиндра с основанием высоты ; вся интегральная сумма - сумма объёмов таких цилиндров, т.е. объём некоторого ступенчатого тела (высота ступеньки, расположенной над подобластью , равна ). Когда , это ступенчатое тело становится всё ближе к изображенному на рисунке телу, ограниченному снизу областью , сверху - поверхностью , с цилиндрической боковой поверхностью, направляющей которой является граница области , а образующие параллельны оси . Двойной интеграл равен объёму этого тела.

  1. 16.1.3. Свойства двойного интеграла.

  2. 16.1.3.1. Линейность. Если функции , интегрируемы по области , то их линейная комбинация тоже интегрируема по области , и .

Док-во. Для интегральных сумм справедливо равенство . Переходя к пределу при и пользуясь свойствами пределов, рассмотренными в разделе 4.4.6. Арифметические действия с пределами (конкретно, свойствами 4.4.10.1 и 4.4.10.2), получим требуемое равенство.

16.1.3.2. А ддитивность. Если область является объединением двух областей и , не имеющих общих внутренних точек, то .

Док-во. Пусть область разбита на подобласти , область разбита на подобласти . Тогда объединение этих разбиений даст разбиение области : на подобластей. Интегральная сумма по области равна сумме сумм по областям и : . Как и в предыдущем случае, переходя к пределу при , получим требуемое равенство.

        1. Интеграл от единичной функции по области равен площади этой области: .

Док-во: Для любого разбиения , т.е. не зависит ни от разбиения, ни от выбора точек . Предел постоянной равен этой постоянной, поэтому .

16.1.3.4. Интегрирование неравенств. Если в любой точке выполняется неравенство , и функции интегрируемы по области , то .

Док-во. В любой точке выполняется неравенство , поэтому . По теореме о переходе к пределу в неравенствах отсюда следует требуемое утверждение.