Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
080 Principles of Flight - 2014.pdf
Скачиваний:
2437
Добавлен:
04.03.2019
Размер:
8.34 Mб
Скачать

Chapter

10

Stability and Control

Introduction

 

 

 

241

Static Stability . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

.

.

241

Aeroplane Reference Axes . . . . . . . . . . . . . . . . . . . . .

. .

.

.

244

Static Longitudinal Stability . . . . . . . . . . . . . . . . . . . .

. .

. .

 

. 244

Neutral Point . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

.

.

249

Static Margin . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

.

.

250

Trim and Controllability

 

 

 

251

Key Facts 1

 

 

 

254

Graphic Presentation of Static Longitudinal Stability

 

 

 

256

Contribution of the Component Surfaces

 

 

 

259

Power-off Stability . . . . . . . . . . . . . . . . . . . . . . . .

. .

.

.

264

Effect of CG Position . . . . . . . . . . . . . . . . . . . . . . .

. .

.

.

265

Power Effects . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

.

.

266

High Lift Devices . . . . . . . . . . . . . . . . . . . . . . . .

. .

. .

 

. 268

Control Force Stability . . . . . . . . . . . . . . . . . . . . . .

. .

. .

 

. 269

Manoeuvre Stability . . . . . . . . . . . . . . . . . . . . . . .

. .

.

.

274

Stick Force Per ‘g’ . . . . . . . . . . . . . . . . . . . . . . . .

. .

. .

 

. 275

Tailoring Control Forces

 

 

 

277

Longitudinal Control . . . . . . . . . . . . . . . . . . . . . . .

. .

.

.

279

Manoeuvring Control Requirement . . . . . . . . . . . . . . . . . .

. .

.

.

279

Take-off Control Requirement . . . . . . . . . . . . . . . . . . . .

. .

.

.

280

Landing Control Requirement . . . . . . . . . . . . . . . . . . . .

. .

.

.

281

Dynamic Stability . . . . . . . . . . . . . . . . . . . . . . . .

. .

. .

 

. 282

Longitudinal Dynamic Stability

 

 

 

286

Long Period Oscillation (Phugoid)

 

 

 

287

Short Period Oscillation

 

 

 

288

Directional Stability and Control

 

 

 

290

Continued Overleaf

239

10 Stability and Control

Control and Stability 10

Sideslip Angle . . . . . . . . . . . . . . . .

. .

. .

. .

. .

. .

. .

 

.291

Static Directional Stability . . . . . . . . . . . .

. .

. .

. .

. .

. .

.

.

292

Contribution of the Aeroplane Components.

 

 

 

 

 

 

 

293

Lateral Stability and Control . . . . . . . . . . .

. .

. .

. .

. .

. .

.

.

301

Static Lateral Stability

 

 

 

 

 

 

 

302

Contribution of the Aeroplane Components . . . . .

. .

. .

. .

. .

. .

.

.

304

Lateral Dynamic Effects

 

 

 

 

 

 

 

309

Spiral Divergence . . . . . . . . . . . . . . .

. .

. .

. .

. .

. .

.

.

309

Dutch Roll . . . . . . . . . . . . . . . . . .

. .

. .

. .

. .

. .

.

.

309

Pilot Induced Oscillations (PIO) . . . . . . . . . .

. .

. .

. .

. .

. .

.

.

310

High Mach Numbers . . . . . . . . . . . . . .

. .

. .

. .

. .

. .

.

.

311

Mach Trim . . . . . . . . . . . . . . . . . .

. .

. .

. .

. .

. .

.

.

311

Key Facts 2

 

 

 

 

 

 

 

312

Summary

 

 

 

 

 

 

 

315

Questions . . . . . . . . . . . . . . . . . .

. .

. .

. .

. .

. .

.

.

318

Key Facts 1 (Completed) . . . . . . . . . . . .

. .

. .

. .

. .

. .

. .

 

.323

Key Facts 2 (Completed) . . . . . . . . . . . .

. .

. .

. .

. .

. .

. .

 

.326

Answers . . . . . . . . . . . . . . . . . .

. .

. .

. .

. .

. .

. .

 

.330

240

Stability and Control

Introduction

Stability is the tendency of an aircraft to return to a steady state of flight without any help from the pilot, after being disturbed by an external force.

An aircraft must have the following qualities:

Adequate stability to maintain a uniform flight condition.

The ability to recover from various disturbing influences.

Sufficient stability to minimize the workload of the pilot.

Proper response to the controls so that it may achieve its design performance with adequate manoeuvrability.

There are two broad categories of stability, static and dynamic. Dynamic stability will be considered later.

Static Stability

An aircraft is in a state of equilibrium (trim) when the sum of all forces is zero and the sum of all moments is zero; there are no accelerations and the aircraft will continue in steady flight. If equilibrium is disturbed by a gust, or deflection of the controls, the aircraft will experience accelerations due to an unbalance of moments or forces.

The type of static stability an aircraft possesses is defined by its initial tendency, following the removal of some disturbing force.

Positive static stability (or static stability) exists if an aircraft is disturbed from equilibrium and has the tendency to return to equilibrium.

Neutral static stability exists if an aircraft is subject to a disturbance and has neither the tendency to return nor the tendency to continue in the displacement direction.

Negative static stability (or static instability) exists if an aircraft has a tendency to continue in the direction of disturbance.

Examples of the three types of static stability are shown in Figure 10.1, Figure 10.2 and Figure 10.3

10

Stability and Control 10

241

10 Stability and Control

Control and Stability 10

Figure 10.1 illustrates the condition of positive static stability (or static stability). The ball is displaced from equilibrium at the bottom of the trough. When the disturbing force is removed, the initial tendency of the ball is to return towards the equilibrium condition. The ball may roll back and forth through the point of equilibrium but displacement to either side creates the initial tendency to return.

POSITIVE STATIC STABILITY

Tendency to Return

to Equilibrium

Equilibrium

Figure 10.1

Figure 10.2 illustrates the condition of neutral static stability. The ball encounters a new equilibrium at any point of displacement and has no tendency to return to its original equilibrium.

Equilibrium Encountered

at any Point of Displacement

NEUTRAL STATIC STABILITY

Figure 10.2

242

Stability and Control 10

Figure 10.3 illustrates the condition of negative static stability (or static instability). Displacement from equilibrium at the hilltop gives a tendency for greater displacement.

 

Tendency to Continue

in

Displacement Direction

 

Equilibrium

NEGATIVE STATIC STABILITY

Figure 10.3

The term “static” is applied to this form of stability since any resulting motion is not considered. Only the initial tendency to return to equilibrium is considered in static stability.

The static longitudinal stability of an aircraft is assessed by it being displaced from some trimmed angle of attack.

If the aerodynamic pitching moments created by this displacement tend to return the aircraft to the equilibrium angle of attack, the aircraft has positive static longitudinal stability.

Stability and Control 10

243

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]