Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
сбор-ответы.doc
Скачиваний:
116
Добавлен:
25.12.2018
Размер:
6.24 Mб
Скачать
  1. Неизотермическое течение жидкостей в трубопроводе. Расчет трубопроводов при неизотермическом течении жидкости

1 – изотермическое ламинарное течение; 2 – нагревание вязкой нефти; 3 – охлаждение вязкой нефти.

Закон распределения температуры жидкости по длине трубопровода получен Жуковым в 1883 г., в основу которого заложена потеря теплоты от элементарного участка dx в единицу времени в ОС: (1), где - поверхность охлаждения элементарного участка, м3, - полный коэффициент теплоотдачи от жидкости в ОС, Вт/м2*0С, t – текущая температура жидкости.

При движении жидкости через рассматриваемый участок dx, жидкость охлаждается на dt 0С и теряет количество теплоты: (2), где - теплоемкость, Дж/кг*0С, G – массовый расход, кг/с. (1)=(2): - уравнение Шухова (закон распределения температуры жидкости по длине трубопровода).

В 1923 г. Лейбензон внес поправку в эту формулу, учтя работу трения потока жидкости, превращающуюся в теплоту, участвующую в тепловом балансе трубопровода: ; - поправка Лейбензона, - средний гидравлический уклон; Е – механический эквивалент теплоты (1 ккал=427 кгс*м=427*9,81 Н*м).

Закон изменения температуры на участке трубопровода, где происходит кристаллизация парафина, описывается формулой Черникина: ; - расстояние, на котором температура падает от tн до tп , - количество парафина, выделяющегося из нефти при понижении температуры от tп до t (доли единицы); - любая температура, для которой известно ; x – скрытая теплота кристаллизации парафина.

  1. Гидравлический расчет трубопроводов, транспортирующих вязкопластичные жидкости.

Под реологическими свойствами нефти будем понимать зависи­мость вязкости нефти от изменения градиента скорости в трубе dv /dr и напряжения сдвига .

Эта зависимость представлена на рис. 36, а.

Важными и взаимосвязанными параметрами, характеризую­щими работу нефтепровода, являются расход нефти (Q = vS), и потери давления в нем р. Оба параметра легко можно выразить через касательные напряжения , возникающие в транспортируе­мой нефти (рис. 36, б).

Рис. 36. Физические свойства ньютоновских и неньютоновских жидкостей и характер их движения по трубам:

а  зависимость напряжений сдвига от градиента скорости ньютоновских (1) и неньюто­новских (2 и 3) жидкостей; б  модель течения неньютоновской жидкости, в  распреде­ление скоростей и напряжений в структурированном потоке.

Согласно закону Ньютона о вязкостном трении при движении жидкости в круглой трубе, уравнение касательного напряжения сдвига записывается в следующем виде:

Парафинистые и застывающие нефти при понижении температуры приобретают вязкопластичные свойства вследствие образования в них пространственной структуры. В этом случае течение нефтей не начнется до тех пор, пока не будет достигнуто предельное напряжение сдвига, необходимое для разрушения пространственной структуры, и только после начала течения наблюдается пропорциональность между градиентом скорости и разностью напряжения τ-τ0.

Таким образом, поведение вязкопластичных жидкостей отклоняется от закона Ньютона и описывается уравнением Шведова-Бингама: τ= τ0пл, где τ0-предельное напряжение сдвига, μпл-пластичная вязкость; du/dn-градиент скорости сдвига.

Профиль скоростей при движении вязкопластичной жидкости в круглой трубе существенно отличается от профиля скорости ньютоновской жидкости. Так как напряжение сдвига убывает от стенки трубы и оси, на некотором радиусе r0 напряжение сдвига становится равным предельному напряжению сдвига τ0, и жидкость в цилиндре радиусом r0 движется в виде «ядра», внутри которого скорость по сечению не изменяется. Радиус цилиндрического ядра r0 определяют по формуле: r0 = τ0. При ламинарном течении вязкопластичных жидкостей в трубах расход определяют по уравнению Букингема:

,

которое также можно записать

.

Для упрощения расчетов применяют формулу Стокса: λ=64/Re*, где Re* - обобщенный параметр Рейнольдса, который вводится с использованием уравнения Букингема в виде: ,

где u-параметр пластичности,

.

При турбулентном движении парафинистых нефтей, являющихся вязкопластичными жидкостями, λ не зависит от Re. Численное значение λ в турбулентном режиме в зависимости от содержания парафина изменяется от 0,028 до 0,038, причем λ возрастает с ростом концентрации твердого парафина.