Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
эконом.информатика (материал).doc
Скачиваний:
3
Добавлен:
25.12.2018
Размер:
257.02 Кб
Скачать

Представление данных в эвм

Любая информация представляется в компьютере как последовательность байтов. В самих байтах нет информации о том, как их надо трактовать (числа/текстовые знаки/графическое изображение). В любом случае информация кодируется в виде последовательности 0 и 1, т.е. положительных целых двоичных чисел (число записывается с помощью двух цифр – 0/1). Их интерпретация зависит от того, какая программа и какое действие с ними совершает в данный конкретный момент. Если в программе присутствует последовательность команд, ориентированных на работу с числами, то байты рассматриваются, как числа. Если в программе предполагается действие с текстовыми данными, то байты интерпретируются, как условные числовые коды, обозначающие знаки текста.

I.Системы счисления

Любое число представляет собой кратную запись суммы (например, 168 = 100 + 60 + 8 = 1•102 + 6•101 + 8•100), т.е. число – последовательность коэффициентов при степенях числа 10 => если имеем число d = a1a2an (a1a2…an – цифры), то d = a1 •10n-1 + a2 •10n-2 +…an • 100.

Кратко подобные суммы записываются следующим образом: n

d = ∑ ai • 10n-i

i=1

Число 10 – основание десятичной системы счисления, если в качестве основания взять другое число, то получим другую систему записи чисел, т.е. другую систему счисления.

Система счисления задается величиной основания и множеством цифр. Цифры – специальные знаки, используемые для записи чисел. Их количество обязательно должно быть равно величине основания.

Любое число можно представить в различных системах счисления, эти представления будут строго (взаимно однозначно) соответствовать друг другу.

К примеру, определим 16-ричную систему счисления: основание = 16 =>должно быть 16 цифр (0-15) = 1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. Здесь A-F – цифры 10,11,12,13,14,15. Такие обозначения используют в связи с тем, что цифры нельзя записывать с помощью других цифр, иначе возникнет путаница в чтении чисел. Запишем, как будет выглядеть в этой системе счисления десятичное число 168, имея в виду общий закон записи числа, а также то, что здесь основанием является 16, имеем: 168(10) = А •161 + 8 •160 => А8(16).

Арифметические действия в любой системе счисления выполняются аналогично тому, как это делается в 10-ричной системе счисления. Следует лишь величину основания.

К примеру, в 8-ричной системе счисления +15 = 1 • 8 1+ 5 • 80 =>+13

=14 = 1 • 81 + 4 • 80 =>=12

31 (8) 25

3 •81 +1 • 80

В компьютере все данные представляются в двоичной системе счисления. Например, число 5 в двоичной форме запишется как 101. Аналогично двоичное число 1111 соответствует десятичному числу 15: 1111(2) = 1 • 23 + 1 • 22 + 1 • 21 + 1 • 20

Т.е. четырьмя битами можно представить не более 16 десятичных чисел (0-15).

В качестве краткой записи при просмотре или исправлении двоичных данных, находящихся в памяти ЭВМ, используется 16-ричная система счисления. Программы, обеспечивающие «непосредственную» работу человека с памятью ЭВМ, при взаимодействии с ним автоматически преобразовывают двоичное представление данных в 16-ричное и обратно. Любое данное, записанное в 1 байте, представляется всего двумя 16-ричными цифрами, первая из которых соответствует первое четверке битов, а вторая цифра – второй четверке битов.

Такая форма представления двоичных чисел (данных), находящаяся в памяти ЭВМ, - компромисс между человеком и его понятиями об удобстве и компьютером, где вся информация представляется только в двоичной форме.

II.Типы данных и их представления

Одним байтом (8 бит) можно представить 256 положительных целых чисел (0-255). Такой тип данных называется однобайтовым целым без знака.

Числа, превышающие 255, требуют более одного байта для своего представления. Для работы с ними используются типы:

  • двухбайтовые целые без знака – обеспечивают представление целых положительных чисел (0-65535)

  • четырехбайтовые целые без знака - обеспечивают представление целых положительных чисел (0-≈4,2 млрд.)

Вышеперечисленные типы предполагают, что число должно быть только положительным => называются «без знака». Они отличаются объемом памяти, который отводится для хранения числа. Такие типы используются для числового кодирования знаков текста, цвета, интенсивности графических точек, нумерации элементов и т.д.

Для работы с целыми числами, которые могут быть не только положительными, но и отрицательными, используют типы:

  • однобайтовые целые со знаком

  • двухбайтовые целые со знаком

  • четырехбайтовые целые со знаком

Они отличаются объемом памяти, который отводится для хранения каждого числа.

В основе представление как положительных, так и отрицательных чисел лежит следующий принцип: общее количество числовых кодов, возможных для данного количества байтов (например, для однобайтового – 256), делится пополам, одна половина используется для представления положительных чисел и нуля, другая – отрицательных чисел. Отрицательные числа представляются, как дополнение до общего количества числовых кодов. Например, для однобайтового число (-1) = 255, (-2) – 254 и т.д. до 128, которое обозначает число (-128) => однобайтовое целое со знаком позволяет работать с целыми числами от (-128) до 127, двухбайтовое – от (- 32768) до 32767, четырехбайтовое – от (≈-2,1 млрд.) до 2,1 млрд. (2147483648).

Числа со знаками используются для представления числовых данных, с которыми производятся арифметические действия.

При взаимодействии с программами используются следующие типы данных:

  • целый короткий (SHORT)

  • целый обычный (INTEGER)

  • целый длинный (LONG INTEGER)

  • вещественный с одинарной точностью (FLOAT/REAL)

  • вещественный с двойной точностью (DOUBLEFLOAT/REAL)

  • символьный (строковый, текстовый) (CHAR)

  • логический (LOGIKAL)

Целый короткий, целый обычный и целый длинный – типы соответственно однобайтовое целое со знаком, двухбайтовое целое со знаком, четырехбайтовое целое со знаком.

В информатике при записи чисел в качестве знака, разделяющего дробную и целую часть, используется не запятая, а точка (например, 68.314). Эта точка фиксирует позицию, после которой указана дробная часть. Изменение местоположения точки приводит к изменению числа => такой вид записи (формат записи) вещественных чисел называется форматом с фиксированной точкой.

Вещественное число с плавающей точкой состоит из 2 частей:

  • мантисса

  • порядок

Они разделены специальным знаком (E,D). Мантисса представляет собой вещественное число с фиксированной точкой, порядок задается целым числом, указывающим в какую степень надо возвести число 10, чтобы при умножении на мантиссу получить число, которое имеется в виду. Например, 68.314 в таком формате можно записать как 6.8314Е+1 = 0.68314Е+2 = 683.14Е-1, что означает 6.8314 • 101 = 0.68314 • 102 = 68.314 • 10-1.

При таком виде записи местоположение точки не фиксировано, ее положение в мантиссе определяется величиной порядка. Мантисса и порядок могут иметь знак. Если мантисса по модулю <1, причем первая цифра не равна 0, то такой вид записи вещественного числа с плавающей точкой называется нормализованным (0.68314Е+2).

В компьютере вещественное число представляется в формате с плавающей точкой в нормализованном виде. Мантисса и порядок располагаются в соседних байтах, разделитель (E,D) отсутствует.

Обычно различают число с одинарной и двойной точностью. В первом случае при вводе или выводе числа в качестве разделителя мантиссы и порядка указывается E. В памяти ЭВМ такое число занимает обычно 4 байта. Во втором случае в качестве разделителя – D, в памяти ЭВМ число с двойной точностью занимает обычно 8 байтов. Этот тип обеспечивает значительно большую точность вычисления, чем одинарная точность.

Символьные данные составлены из отдельных текстовых знаков. Каждый знак представляется в памяти ЭВМ определенным числовым кодом. Для числового кодирования текстовых знаков используются специальные таблицы кодирования (однобайтовые, двухбайтовые и др.). Имеется в виду тип целого без знака, который использован для числового кодирования. Разные программы могут основываться на разных таблицах => тестовый документ, созданный с помощью одной программы, не обязательно может быть прочитан с помощью другой.

Величины логического типа принимают только два значения:

  • TRUE (истина)

  • FALSE (ложь)

К ним можно применять логические операции, основными из которых являются and (и), or (или), not (отрицание). And, or –к двум логическим величинам (a>c and a = b). Not – к одной логической величине (not a = b). Результатом выражения с логическими данными (логического выражения) является логическая величина. Результат операции and = TRUE только в одном случае, если обе величины = TRUE. Результат операции or = FALSE только в одном случае, если обе величины = FALSE. Операция not изменяет значение логической величины.

В смешанных выражениях приоритет у арифметических операций, затем – у сравнения, в последнюю очередь – у логических операций. Среди них наибольший приоритет у операции not, затем – and, после – or.