Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
готовая эКо (=.doc
Скачиваний:
39
Добавлен:
20.12.2018
Размер:
570.37 Кб
Скачать

. Предмет и основные задачи экологии.

Экология - биологическая наука о взаимоотношениях между живыми организмами и средой их обитания. Этот термин был предложен в 1866 г. немецким зоологом Эрнстом Геккелем. Изначально экология развивалась как составная часть биологической науки в тесной связи с другими естественными науками - химией, физикой, геологией, географией, математикой. Становление экологии стало возможным после того, как были накоплены обширные сведения о многообразии живых организмов на Земле и особенностях их образа жизни в различных местообитаниях, и возникло понимание, что строение, функционирование и развитие всех живых существ, их взаимоотношения со средой обитания подчинены определенным закономерностям, которые необходимо изучать.

Невозможно охранять природу, пользоваться ею, не зная, как она устроена, по каким законам существует и развивается, как реагирует на воздействия человека, какие предельно допустимые нагрузки на природные системы может позволить себе общество, чтобы не разрушить их. Все это и является предметом экологии.

Предметом экологии является совокупность или структура связей между организмами и средой. Главный объект изучения в экологи - экосистемы, т.е. единые природные комплексы, образованные живыми организмами и средой обитания. Кроме того, в область ее компетенции входит изучение отдельных видов организмов (организменный уровень), их популяции, т. е. совокупностей особей одного вида (популяционно-видовой уровень) и биосферы в целом (биосферный уровень). Основной, традиционной частью экологии как биологической науки является общая экология, которая изучает общие закономерности взаимоотношений любых живых организмов и среды (включая человека как биологическое существо).

Основными задачами экологии являются:

1. Изучение закономерностей организации жизни, в том числе в связи с антропогенными воздействиями на природные системы и биосферу в целом, а именно: а) закономерности размещения живых организмов в пространстве; б) изменение численности организмов; в) поток энергии через живые системы и круговорот веществ, происходящий при участии живых организмов;

2. Создание научной основы эксплуатации биологических ресурсов, прогноз

изменений природы под влиянием деятельности человека и управления

процессами, протекающими в биосфере, сохранение среды обитания человека и всех живых организмов;

3. Разработка системы мероприятий, обеспечивающих минимум применения

химических средств борьбы с вредными видами организмов;

4. Регуляция численности живых организмов;

5. Экологическая индикация состояния и загрязнения природных сред.

Все вышеперечисленные задачи направлены на сохранение биологического разнообразия как основного условия устойчивого развития природы и общества.

Стратегической задачей экологии считается развитие теории взаимодействия природы и общества на основе нового взгляда, рассматривающего человеческое общество как неотъемлемую часть биосферы.

Таким образом, экология становится одной из важнейших наук будущего и «возможно, само существование человека на нашей планете будет зависеть от ее прогресса».

Роль экологических знаний в жизни человека всегда была огромна. В период охоты и собирательства знания об образе жизни животных и растений передавались устно от родителей к детям и обогащались благодаря опыту и наблюдательности. Постепенно люди стали накапливать знания об оптимальных сроках посева и сбора урожая, о свойствах почв и удобрений, о влиянии растений друг на друга, о пищевых потребностях животных и.т.д. Когда экология сформировалась как наука (начало 20 века), ее роль для практики резко возросла. Появилась возможность предсказывать последствия хозяйственной деятельности и давать рекомендации, как развивать сельское хозяйство и промышленность, вести промысел, не истощая природные ресурсы и не нарушая природные сообщества.

Использование человеком природных богатств при полном незнании законов природы часто приводит к тяжелым, непоправимым последствиям. В качестве яркого примера можно привести Аральский кризис. Если государства имеют границы, то у природы их нет. Воздушные массы и воды перемещаются на большие расстояния. Из-за экологической безграмотности и в погоне за сиюминутной выгодой многие не хотят задумываться о будущем, а все наши негативные вмешательства в гармонию природы вернутся бумерангом, и в конце концов пострадает сам человек.

Экологическая наука накопила существенный образовательный, воспитательный потенциал и подтвержденные исторической практикой доказательства о необходимости создания экологически образованного общества, мотивации каждого человека к получению знаний по экологии. Теория и практика показали, что экологическая составляющая является неотъемлемой частью человеческого развития. С экологической точки зрения, устойчивое развитие должно обеспечивать целостность биологических и физических природных систем.

. История развития экологических знаний.

В истории экологии можно выделить несколько периодов, или этапов.

I. Накопление данных о жизни организмов и взаимоотношениях растений и животных со средой. I этап предыстории экологии как науки продолжался с глубокой древности до конца XVIII века. Он характеризовался появлением элементов экологических знаний в зоологических и ботанических трудах многих естествоиспытателей, среди которых особую роль сыграли труды «отца зоологии» Аристотеля и «отца ботаники» Феофраста, Карла Линнея, русского ученого-агронома А.Т. Болотова и академика П.С. Палласа.

II. Создание экологических направлений в пределах ботанической и зоологической географии. II этап развития экологии связывается с дальнейшей дифференциацией наук о живой природе (появлением ботанической и зоологической географии), а также их интеграцией (ранее существовавшие отдельно зоология, ботаника, анатомия и физиология объединяются в биологию) на почве эволюционного учения. Особое место в развитии данного этапа занимает деятельность Л. Гумбольдта, Ж.-Б. Ламарка, К.Ф. Рулье и его школы.

III. Формирование экологии животных и экологии растений как наук об адаптациях организмов. III этап развития экологии определяется развитием дарвинизма. Э. Геккель, вводя термин «экология», отмечал, что одной из задач данной науки является исследование всех тех взаимоотношений организмов, которые Ч. Дарвин условно обозначил как борьбу за существование. Отметить исследования почвоведа-географа В.В. Докучаева.

IV. Становление современной экологии. IV этап развития экологии, начавшийся в 20-х годах XX века, характеризуется становлением экологии как общебиологической науки, что отмечается в трудах В.Н. Сукачева, В.И. Вернадского. В последней трети XX века экология приобрела особое социальное звучание. Началась экологизация науки, образования и всех аспектов деятельности человеческого общества. Возникшая более 100 лет тому назад как учение о взаимосвязи организма и среды, экология превратилась в комплекс фундаментальных и прикладных дисциплин, названный Н.Ф. Реймерсом (1992) мегаэкологией.

Термин «биосфера» впервые ввел в научный обиход в 1875 г. австрийский геолог Э. Зюсс, в работах которого биосферу понимали как тонкую пленку жизни на земной поверхности, в значительной мере определяющую лик Земли. Большой вклад в формирование эколог.знаний внесли такие выдающиеся ученые, как шведский естествоиспытатель Карл Линней и франц. исследователь природы Жорж Бюффон, в трудах которых подчеркивалось ведущее значение климатических факторов.

Как самостоятельная наука экология сформировалась к началу двадцатого столетия. Большой вклад в ее развитие в XX в. внесли всемирно известные ученые-ботаники Тимирязев, Докучаев, Клементс, Сукачев и ряд других. Крупнейший русский ученый XX в. В.И. Вернадский создает учение о биосфере. Он показывает, какую огромную роль играют живые организмы в геохимических процессах на нашей планете. Он вводит новое понятие - ноосфера, что означает "мыслящая оболочка", то есть сфера разума. Современный этап развития экологической науки характеризуется признанием того, что проблемы окружающей среды затрагивают все страны мира. Определились приоритетные проблемы глобального характера, такие как изменения, в озоновом слое атмосферы, повышенное накопление углекислого газа, загрязнение океана, которые не имеет политических границ и решение, которых возможно только при объединении усилий ученых многих стран.

. Разделы экологии: аутэкология, демэкология, синэкология, глобальная экология.

Экология - биологическая наука о взаимоотношениях между живыми организмами и средой их обитания. В зависимости от того, какой уровень организации экосистем изучается, экология подразделяется на отрасли:

Аутэкология изучает жизненные циклы и отношение к факторам среды отдельных особей или видов. Цель ее заключается в том, чтобы выявить характер приспособления их к жизни в конкретном сообществе, их роль в экосистеме. Аутоэкология изучает взаимоотношения организма с окружающей средой. В отличие от демэкологии и синэкологии, сосредоточенных на изучении взаимоотношений со средой популяций и экосистем, состоящих из множества организмов, исследует индивидуальные организмы на стыке с физиологией.

Демэкология (экология популяций) изучает динамику численности популяций, внутрипопуляционные группировки и их взаимоотношения. В рамках демэкологии выясняются условия, при которых формируются популяции. Демэкология описывает колебания численности различных видов под воздействием экологических факторов и устанавливает их причины, рассматривает особь не изолированно, а в составе группы таких же особей, занимающих определённую территорию и относящихся к одному виду.

Синэкология изучает взаимоотношения организмов различных видов внутри сообщества организмов. Часто синэкологию рассматривают как науку о жизни биоценозов, то есть многовидовых сообществ животных, растений и микроорганизмов. Синэкология, она же биоценология, изучает все комплексы видов в сообществах, т.е. экосистемы, изучает законы их совместного сосуществования в биоценозе в зависимости от условий внешней среды. Она базируется на аут-, дем- и эйдоэкологии, но ей присущ общебиологический характер, поскольку ее исследования направлены на многовидовые взаимоупорядоченные комплексы, существующие в строго определенной физико-химической среде.

Глобальная экология в целом занимается изучением биосферы. Совокупность всех экосистем Земли в пределах трех геосфер (литосферы, гидросферы и атмосферы), с которыми взаимодействуют живые организмы, образует самую крупную экосистему Земли - биосферу Глобальную экологию по-другому называют «Мегаэкология». М.- область знания, объединяющая все науки (в том числе и небиологические), имеющими дело с экологическими проблемами (например, социальную экологию, экологию личности, правовую экологию), и мероприятия, направленные на решение экологических проблем (приемы охраны окружающей среды и рационального использования природных ресурсов). Мегаэкология, в определенном смысле, - это образ жизни, образ мышления, политика.

В целом современная экология – научное направление, рассматривающее некую значимую совокупность природных и отчасти социальных (для человека) явлений и предметов. В настоящее время экология распалась на ряд отраслей и дисциплин, подчас далеких от первоначального ее понимания как биологической науки. Современная экология в своей структуре имеет следующие разделы:

1) общая экология, 2) геоэкология, 3) биоэкология, 4) экология человека, 5) социальная экология, 6) прикладная экология

Каждый раздел имеет свои подразделения и связи с другими частями экологии и смежными науками.

Причины обострения экологической ситуации в различных регионах планеты

Экологические проблемы стали возникать с первых дней существования человечества. Но только в последние два столетия, особенно начиная с 50-х годов 20 столетия, экологические проблемы стали угрожать существованию биосферы. Экологические проблемы обусловлены, прежде всего, загрязнением окружающей среды, воздушного бассейна и Мирового океана, истощением природных ресурсов. Экологическая проблема, включающая вопросы охраны окружающей среды и рационального природопользования, является глобальной проблемой, затрагивающей интересы всего шестимиллиардного населения нашей планеты, интересы всех без исключения государств, интересы каждого человека. Поэтому любые экономические и политические решения, которые нарушают научно-обоснованные медицинские, экологические или иные требования к окружающей среде, являются в принципе неприемлемыми. Все организмы выделяют в окружающую среду продукты распада, образующиеся в процессе их жизнедеятельности. Это СО2, экскременты, непереваренные остатки пищи и др. Продукты распада делают среду менее благоприятной для тех живых организмов, которые их образуют. Но в сбалансированной экосистеме выделения одного организма служат пищей другому, поэтому продукты распада в среде не накапливаются. Загрязнение среды возникает в тех случаях, когда выделения не уничтожаются с той же скоростью, с которой они образуются. Загрязнение - это превышение естественного уровня различных веществ в среде и привнесение в среду новых, не характерных для нее веществ. То, что современный экологический кризис является обратной стороной НТР, подтверждает тот факт, что именно те достижения научно-технического прогресса, которые послужили отправной точкой объявления о наступлении НТР, привели и к самым мощным экологическим катастрофам на нашей планете. В 1945 г. была создана атомная бомба, свидетельствующая о новых невиданных возможностях человека. В 1954 г. была построена первая в мире атомная электростанция в Обнинске -- на «мирный атом» возлагалось много надежд. А в 1986 г. произошла самая крупная в истории Земли техногенная катастрофа на Чернобыльской АЭС как следствие попытки «приручить» атом и заставить его работать на себя. В результате этой аварии выделилось больше радиоактивных материалов, чем при бомбардировке Хиросимы и Нагасаки. «Мирный атом» оказался более страшным, чем военный. Человечество столкнулось с такими техногенными катастрофами, которые вполне могут претендовать на статус суперрегиональных, если не глобальных. Особенность радиоактивного поражения в том, что оно способно убить безболезненно. Боль, как известно, является эволюционно развитым защитным механизмом, но «коварство» атома состоит в том, что в данном случае этот предупредительный механизм не включается. Чернобыльская авария затронула более 7 млн. человек и коснется еще многих, в том числе и не родившихся, поскольку радиационное заражение влияет не только на здоровье живущих ныне, но и тех, кому предстоит родиться. Средства же на ликвидацию последствий катастрофы могут превысить экономическую прибыль от работы всех АЭС на территории бывшего СССР. Чернобыль разрешил споры о том, можем ли мы говорить об экологическом кризисе на нашей планете или всего-навсего об экологических трудностях, переживаемых человечеством, и насколько уместны слова об экологических катастрофах. Чернобыль был экологической катастрофой, захватившей несколько стран, последствия которой трудно полностью предугадать. Второй крупнейший катастрофой суперрегионального масштаба является высыхание Аральского моря. Еще несколько десятилетий назад газеты прославляли строителей Каракумского канала, благодаря которому вода пришла в бесплодную пустыню, превратив ее в цветущий сад. Но прошло немного времени и выяснилось, что победные реляции о «покорении» природы оказались опрометчивыми. Полезный эффект от орошения был далек от расчетного, почвы на громадной территории оказались засоленными, вода в многочисленных каналах стала высыхать, и вслед за этим приблизилась катастрофа, которая в отличие от чернобыльской не случилась мгновенно в результате аварии, а понемногу подбиралась годами, с тем чтобы предстать во всем своем ужасающем виде. В настоящее время площадь Арала уменьшилась наполовину, а ветры принесли токсичные соли с его дна на плодородные земли, отдаленные на тысячи километров. «В питьевую воду попало такое количество химических сбросов, что матери в районе Аральского моря не могут кормить грудью своих детей, не подвергая их риску отравления» Фешбах М., Френдли А. Экоцид в СССР. М., 1992. Спасти Арал уже не удастся, и этот отрицательный опыт преобразования лика Земли подтверждает вывод В.И. Вернадского о том, что человек стал величайшей геологической силой на нашей планете. Чтобы не создалось впечатление, что экологические катастрофы происходят только на территории СССР, упомянем о катастрофе, вызванной вырубанием тропических лесов в Бразилии, что может повлиять на изменение климата на планете с последствиями, которые трудно представить в полном объеме. Перейдем теперь к другим реальным экологически негативным последствиям. Проблема загрязнения природной среды становится столь острой как из-за объемов промышленного и сельскохозяйственного производства, так и в связи с качественным изменением производства под влиянием научно-технического прогресса. Первое обстоятельство связано с тем, что лишь 1--2% используемого природного ресурса остается в конечном произведенном продукте, а остальное идет в отходы, которые -- это второе обстоятельство -- не усваиваются природой. Многие металлы и сплавы, которыми пользуется человек, неизвестны природе в чистом виде, и, хотя они в какой-то мере подвластны утилизации и вторичному употреблению, часть их рассеивается, накапливаясь в биосфере в виде отходов. Проблема загрязнения природной среды в полномасштабно встала после того, как в XX в. человек существенно расширил количество используемых им металлов, стал изготавливать синтетические волокна, пластмассы и другие вещества, имеющие свойства, которые не только не известны природе, но даже вредны для организмов биосферы. Конкретных примеров загрязнения природной среды в литературе приведено великое множество. Известны основные источники загрязнения: автомобили, промышленность, теплоэлектростанции. Выявлены и изучены важнейшие загрязнители: окись углерода, соединения свинца, асбестовая пыль, углеводороды, ртуть, кадмий, кобальт и другие металлы и соединения. Обычно говорят о загрязнении почвы, воды, воздуха, растительных и животных организмов. Совершенно ясно, однако что, в конечном счете, это отражается на человеке. Получено много данных о роли загрязнения природной среды в возникновении различных заболеваний. Загрязнение воздуха в промышленных центрах, по заключению экспертов Всемирной организации здравоохранения, -- главная причина распространения хронических бронхитов, катаров верхних дыхательных путей, пневмонии, эмфиземы и одна из причин, вызывающих рак легких. Явную причинно-следственную связь между загрязнением природной среды и заболеваниями проследить нелегко, потому что причин всегда оказывается много, но тем не менее косвенно определить влияние загрязнения природной среды возможно, поскольку, к примеру, жители особо запыленных мест и работающие на вредных производствах болеют чаще. Ведется статистика экологически обусловленных заболеваний. Особенно острая ситуация сложилась для жителей крупных городов. В крупных городах объемы твердых отходов резко возрастают, достигая 1 т. в год на одного жителя. Сжигание городского мусора, содержащего значительные количества компонентов, которые не подвергаются минерализации в почве (стекло, пластмасса, металл), приводит к дополнительному загрязнению атмосферного воздуха, которое и так, как правило, превышает по большинству агентов предельно допустимые концентрации (ПДК).

Краткая история вопроса происхождения жизни на Земле. Жизнь — одно из сложнейших явлений природы. Со времен глубокой древности она казалась таинственной и непознаваемой — вот почему по вопросам ее происхождения всегда шла острая борьба между материалистами и идеалистами. Приверженцы идеалистических взглядов считали жизнь духовным, нематериальным началом, возникшим в результате божественного творения. Материалисты же, напротив, полагали, что жизнь на Земле могла возникнуть из неживой материи путем самозарождения (абиогенез) или занесения из других миров, т.е. является порождением других живых организмов (биогенез). По современным представлениям, жизнь — это процесс существования сложных систем, состоящих из больших органических молекул и неорганических веществ и способных самовоспроизводиться, саморазвиваться и поддерживать свое существование в результате обмена энергией и веществом с окружающей средой. С накоплением человеком знаний об окружающем мире, развитием естествознания изменялись взгляды на происхождение жизни, выдвигались новые гипотезы. Однако и сегодня вопрос о происхождении жизни еще окончательно не решен. Существует множество гипотез происхождения жизни. Креационизм. Согласно этой религиозной гипотезе, имеющей древние корни, все существующее во Вселенной, в том числе жизнь, было создано единой Силой — Творцом в результате нескольких актов сверхъестественного творения в прошлом. Сотворенные виды были с самого начала превосходно организованы и наделены способностью к некоторой изменчивости в определенных границах. Этой гипотезы придерживаются последователи почти всех наиболее распространенных религиозных учений. Гипотезы самозарождения. На протяжении тысячелетий люди верили в самопроизвольное зарождение жизни, считая его обычным способом появления живых существ из неживой материи. Полагали, что источником спонтанного зарождения служат либо неорганические соединения, либо гниющие органические остатки. На протяжении столь длительной истории эта гипотеза видоизменялась, но по-прежнему оставалась ошибочной. Голландский ученый А. Левенгук открыл мельчайшие организмы, невидимые невооруженным глазом. Левенгук высказал мысль, что эти крошечные организмы, как он их называл, происходят от себе подобных. Мнение Левенгука разделял итальянский ученый Ладзаро Спалланцани, который решил доказать опытным путем, что микроорганизмы, часто обнаруживаемые в мясном бульоне, самопроизвольно в нем не зарождаются. Своими опытами Спалланцани доказал невозможность самопроизвольного зарождения микроорганизмов. Противники этой точки зрения утверждали, что жизнь в колбах не возникала по той причине, что воздух в них во время кипячения портится, поэтому по-прежнему признавали гипотезу самозарождения. Сокрушительный удар по этой гипотезе был нанесен в 19 в. Пастером и Тиндалем. Они показали, что бактерии распространяются по воздуху и что если в воздухе, попадающем в колбы с простерилизованным бульоном, их нет, то и в самом бульоне они не возникнут. Гипотеза стационарного состояния. Согласно этой гипотезе Земля никогда не возникала, а существовала вечно; она всегда была способна поддерживать жизнь, а если и изменялась, то очень мало; виды также существовали всегда. Эту гипотезу называют иногда гипотезой этернизма. Гипотеза этернизма была выдвинута немецким ученым В. Прейером в 1880 г. Гипотеза панспермии. Гипотеза о появлении жизни на Земле в результате переноса с других планет неких зародышей жизни получила название панспермии. Эта гипотеза примыкает к гипотезе стационарного состояния. Ее приверженцы поддерживают мысль о вечном существовании жизни и выдвигают идею о внеземном ее происхождении. Одним из первых идею о космическом происхождении жизни высказал немецкий ученый Г. Рихтер в 1865 г. На сегодняшний день существует множество гипотез о происхождении жизни на Земле.

Роль живых организмов в создании условий для выхода жизни на сушу

Живое вещество биосферы выполняет следующие основные функции: энергетическую, деструктивную, концентрационную и средообразующую. Энергетическая функция выполняется зелеными растениями, которые в процессе фотосинтеза аккумулируют солнечную энергию в виде разнообразных химических соединений. Эта энергия распределяется внутри экосистемы в виде пищи между животными. В конечном счете, эта энергия рассеивается в окружающей среде. Однако часть ее может накапливаться в отмершем органическом веществе и переходить в ископаемое состояние, образуя залежи горючих полезных ископаемых – торфа, каменного угля и нефти, являющихся энергетической базой для человеческого общества. Деструктивная функция заключается в разложении и минерализации мертвого органического вещества, химическом разложении горных пород и вовлечении образовавшихся минералов в биотический круговорот. Мертвое органическое вещество разлагается до простых неорганических соединений: углекислого газа, воды, сероводорода, метана, аммиака и др., которые вновь используются в начальном звене круговорота. Этим занимаются специальные организмы – редуценты, или деструкторы. Концентрационная функция заключается в избирательном накоплении организмами в процессе жизнедеятельности атомов веществ, рассеянных в природе. Одной из характерных особенностей живого вещества является способность концентрировать химические элементы из разбавленных растворов. Наиболее активными концентратами являются микроорганизмы. Осуществление данной функции способствовало образованию залежей полезных ископаемых (известняка, мела и т.д.). Средообразующая функция заключается в трансформации физико-химических параметров среды (атмосферы, литосферы и гидросферы) в условия, благоприятные для существования организмов. Эта функция является совместным результатом всех трех рассмотренных выше функций живого вещества биосферы. Благодаря этой функции живое вещество создало и поддерживает в равновесии баланс вещества и энергии в биосфере, поддерживает стабильность существования организмов. Живое вещество способно восстанавливать условия и места обитания, нарушенных в результате природных катастроф или хозяйственной деятельности человека. Эту способность живого вещества к регенерации природных экологических условий выражает принцип Ле Шателье, заимствованный из области термодинамических равновесий, суть которого состоит следующем: изменение любых переменных в системе в ответ на внешние возмущения происходит в направлении компенсации производимых возмущений. В теории управления аналогичное явление носит название отрицательных обратных связей. Благодаря этим связям система поддерживает свою устойчивость и возвращается в первоначальное состояние, если производимые возмущения не превышают пороговых значений. В результате средообразующей функции в географической оболочке Земли произошли такие важнейшие события, как преобразование газового состава первичной атмосферы; изменение химического состава вод первичного океана; образование толщи осадочных пород в литосфере; возникновение на поверхности суши плодородного почвенного покрова. Основой функционирования живого вещества в биосфере является биотический круговорот веществ, который обеспечивается взаимодействием трех функциональных групп. Движущей силой этого круговорота является солнечная энергия.

Организм и условия его обитания

Организм (позднелат. organismus от позднелатинского organizo - устраиваю, сообщаю стройный вид, от др.-греч. - орудие) - живое существо, части которого - органы - влияют одна на другую так, что они функционируют вместе как стабильное целое.Живые организмы:Самое общее их деление на ядерные и безъядерные.По числу составляющих организм клеток их делят на одноклеточные и многоклеточные.Формирование целостного многоклеточного организма - процесс, состоящий из дифференцировки структур (клеток, тканей, органов) и функций и их интеграции как в онтогенезе, так и в филогенезе.Классификация -По уровню необходимой кислотности среды различают ацидофильные и ацидофобные организмы.-По необходимости кислорода для жизнедеятельности: аэробные и анаэробные организмы.-По способности синтезировать необходимые для жизнедеятельности вещества: ауксотрофные, аутотрофные, гетеротрофные и миксотрофные организмы.-По уровню необходимой солёности среды выделяют галофильные и галофобные организмы.-По способности существовать в условиях различной солёности: гетерогалинные и гомогалинные организмы.-По возможности выживания в условиях низких и высоких температур: криофильные и термофильные организмы.-По связи с человеком: синантропные и не синатропные организмы.-По способности переносить значительные изменения солёности окружающей среды: стеногалинные и эвригалинные организмы.-По способности переносить значительные колебания температуры: стенотермные и эвритермные организмы.-По обитанию в строго определённых биотопах: стенотопные и эвритопные организмы.-По обитанию в строго определённом грунте: стеноэдафические и эвриэдафические организмы.-По обитанию на земном шаре: циркумполярные и циркумтропические организмы.-По приспособленности к обитанию в загрязнённых водоёмах: сапробные и несапробные организмы.-По количеству, составляющих организм клеток: многоклеточные и одноклеточные организмы. --Организм это основная единица жизни, реальный носитель её свойств, так как только в клетках организма происходят процессы жизни. Как отдельная особь организм входит в состав вида и популяции, являясь структурной единицей популяционно-видового уровня жизни.Живое неотрывно от среды. Каждый отдельный организм, являясь самостоятельной биологической системой, постоянно находится в прямых или косвенных отношениях с разнообразными компонентами и явлениями окружающей его среды или, иначе, среды обитания, влияющими на состояние и свойства организма.Среда - одно из основных экологических понятий, которое означает весь спектр окружающих организм элементов и условий в той части пространства, где обитает организм, все то, среди чего он живет и с чем непосредственно взаимодействует. На нашей планете живые организмы освоили четыре основные среды обитания, сильно различающиеся по специфике условий. Водная среда была первой, в которой возникла и распространилась жизнь. В последующем живые организмы овладели наземно - воздушной средой, создали и заселили почву. Четвертой специфической средой жизни стали сами живые организмы, каждый из которых представляет собой целый мир для населяющих его паразитов или симбионов.Приспособления организмов к среде носят название адаптаций. Способность к адаптациям - одно из основных свойств жизни вообще, так как обеспечивает самую возможность существования, возможность организмов выживать и размножаться. Адаптации проявляются на разных уровнях: от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экологических систем. Адаптации возникают и изменяются в ходе эволюции видов.Отдельные свойства или элементы среды носят название экологических факторов. Факторы среды многообразны. Они могут быть необходимы или, наоборот, вредны для живых существ, способствовать или препятствовать выживанию и размножению. Экологический фактор - любой элемент окружающей среды, способный прямо или косвенно влиять на живой организм, хотя бы на одном из этапов его индивидуального развития, называют экологическим фактором.Экологические факторы многообразны, при этом каждый фактор является совокупностью соответствующего условия среды и его ресурса.Экологические факторы среды принято делить на две группы:· Факторы косной (неживой) природы - абиотические или абиогенные;· Факторы живой природы - биотические или биогенные.С другой стороны, по происхождению и те, и другие бывают как природными, так и антропогенными, т.е. прямо или косвенно связанными с деятельностью человека, который не только меняет режимы природных экологических факторов, но и создает новые, синтезируя ядохимикаты, удобрения, лекарства и т.п.

Климат – ведущий фактор формирования основных экосистем Земли

Археологические исследования однозначно доказывают, что климат планеты Земля изменялся достаточно резко. Для объяснения причин этого существует множество гипотез, учитывающих астрономические и геофизические факторы. К.Я. Кондратов и Е.. Борисенков пришли к выводу, что климат планеты сохранится неизменным, если не изменится расстояние Земли от Солнца, орбита Земли вокруг Солнца, скорость ее движения и суточного вращения и угол наклона оси вращения Земли к плоскости эклиптики. По мнению М.О. Френкеля, с начала 40-х гг. прошлого столетия начался период общего потепления. В это время, влияние антропогенных факторов только начинало проявляться, так что повышение температуры скорее носило естественный характер. Однако, с 70-х гг. естественное потепление усилилось влиянием деятельности человека и в итоге стало более значимым. Климатическая система Земли испытывает воздействие ряда факторов как внешних, так и возникающих в самой системе. Из внешних факторов наиболее четко проявлялись колебания прозрачности атмосферы вулканогенного характера, а из вторых - взаимодействие океанов и льдов, а также разных частей океанов между собой. При этом указанные факторы налагаются один на другой, усиливаясь при совпадении фаз и ослабевая при их различии. Одним из важнейших звеньев в проблеме солнечно - атмосферных связей является стратосфера, которой отводится роль триггерного (спускового) элемента, обеспечивающего передачу возмущений в нижние слои атмосферы. В стратосфере происходит поглощение ультрафиолетовой радиации Солнца, и в периоды усиления солнечной активности тепловой баланс стратосферы существенно меняется: увеличивается ее приходная часть, что сказывается на температурном режиме и ее циркуляции. Н.В. Исмагилов выявил положительную асинхронную связь между уровнем солнечной активности в 11-летнем цикле и датами весенних перестроек циркуляции. Астрономические факторы определяют количество энергии излучения Солнца, приходящей к данному участку верхней границы атмосферы за данный период времени (поток солнечной энергии, инсоляция). Этот суммарный по всем длинам волн поток на среднем расстоянии Земли от Солнца называется солнечной постоянной и равен в среднем 1370 Вт/м2. К внешним геофизическим факторам относятся масса и состав атмосферы, скорость вращения Земли, расположение материков и океанов на поверхности Земли, вулканические извержения. Скорость вращения Земли отчасти определяет интенсивность и характер циркуляции атмосферы, разные радиационные и теплоемкостные характеристики поверхности суши и океана, влияет на радиационный режим, теплообмен между атмосферой и подстилающей поверхностью, на муссонные эффекты. Очертания океанов определяют направление и характер течений, переносящих тепло из тропической зоны в высокие широты. Во время крупных взрывных вулканических извержений в стратосферу выбрасываются большие массы аэрозолей и газов, рассеивающих и поглощающих Солнца и ИК радиацию Земли и атмосферы. Внутренние естественные факторы возникают и действуют внутри какой-либо составляющей климатической системы или, зарождаясь в одной из составляющих, действуют на другую. К ним относятся излучение и поглощение энергии атмосферой и океаном, атмосферная циркуляция, криосфера (ледники и подземные льды вечной мерзлоты), биосфера, уменьшающая альбедо подстилающей поверхности.Можно назвать еще несколько антропогенных факторов, воздействующих на глобальный климат, таких как: антропогенное увеличение содержания в атмосфере газов, создающих в ней парниковый эффект ( в первую очередь СО2), острова тепла в городах и промышленных зонах, хозяйственная деятельность человека (строительство водохранилищ, орошение земель, вырубка лесов и др.) К числу основных факторов и причин, определяющих эволюцию глобального климата Земли авторы относятся следующие: 1) Изменения потоков солнечной радиации, связанные с изменением излучения Солнца; 2) Изменения в распределении суши и моря, определяемые тектоникой плит, и связанные с эти процессами изменения орографии суши, циркуляции океана и его уровня; 3) Изменения газового состава атмосферы, в первую очередь - концентрация углекислого газа и метана; 4) Изменения планетарного альбедо; 5) Изменения орбитальных параметров Земли; 6) Изменения катастрофического характера - земного и космического.

Типы наземных экосистем

- Тропический лес. Биом, лес в экваториальных (влажный экваториальный лес), субэкваториальных и влажнотропических районах с влажным климатом (2000—7000 мм осадков в год). В дополнение к чрезмерному выпадению осадков, влажные тропические леса характеризуются большим количеством постоянных (в противоположность мигрирующим) видов животных и огромным биоразнообразием флоры и фауны. - Тропические степи и саванны. Тропический тип биома, характеризующийся сочетанием травянистой растительности (преимущественно злаковой) с одиночно разбросанными деревьями и кустарниками (баобаб, зонтичные акации и др.). Саванны расположены в тех областях, где в год выпадает довольно большое количество осадков (700–1500 мм), но имеется один или два продолжительных сухих сезона, когда возникают пожары, представляющие собой важный фактор окружающей среды.- Пустыни (кустарниковые и травянистые). Характерна равнинная поверхность, разреженность или отсутствие флоры и специфической фауной. Благодаря удалённости от прогресса и устойчивой климатической, пустыни сохранили уникальные экологические системы. В некоторых странах участки пустынь включены в состав национальных заповедников. С другой стороны, человеческая деятельность вблизи пустынь (вырубка леса, перекрытие рек) привела к расширению пустынь.- Чапараль (кустарниковое сообщество). Субтропические формации вечнозеленых низкорослых ксерофитных кустарников с отдельными оголенными выходами горных пород.- Степи умеренной зоны. Тип биома, злаковники умеренной зоны, распространенные в внутриконтинентальных районах сев. и южн. полушарий. Сложился в условиях продолжительного жаркого лета и достаточно холодной зимы, при количестве осадков от 200 до 550 мм в год.- Листопадный лес умеренной зоны произрастают в районах с невысокими средними температурами, значительно меняющимися по сезонам. Здесь продолжителен летний период, зимы не очень суровы, осадки выпадают довольно равномерно в течение всего года. В отличие от тропических лесов, большинство лесов умеренного пояса устойчивы к нарушениям и очень быстро восстанавливаются после вырубки.- Бореальные хвойные леса (тайга) распространены в районах субарктического климата. Эти хвойные леса почти непрерывной полосой протягиваются через Северную Америку, Азию и Европу непосредственно к югу от арктической тундры.-Тундра: арктическая и альпийская. В структуре ландшафтов преобладают пятнистые и полигональные равнинные тундры, бугристые болота, заросли кустарников в долинах тундровых рек. Биом имеет циркумполярное размещение.

Определение экологических факторов природной среды и их классификация.

Экологические факторы - элементы среды, оказывающие существенное влияние на живой организм. Любой организм в среде своего обитания подвергается воздействию самых разнообразных факторов: климатических, эдафических (почвенных) и биотических (воздействие живых организмов). Они по своим особенностям весьма разнообразны, имеют различную природу и специфику действия. Экологические факторы делятся на три большие группы:

  • абиотические - факторы неживой природы

  • биотические - связанные с влиянием живых существ

  • антропогенные - связанные с действиями и деятельностью человека

Наряду с представленной существуют и другие классификации экологических факторов. Например, по времени действия – эволюционные (температура, свет, влажность, соленость) и действующие (современные); по периодичности действия – периодические (сезонные) и непериодические (техногенные залповые выбросы, природные катаклизмы); исторические (в ходе филогенеза, то есть исторического развития вида). Необходимо помнить, что деятельность человека оказывает определяющее воздействие на все эти факторы. В настоящее время антропогенное влияние затрагивает практически все стороны взаимодействия организма с условиями его обитания. Поэтому изучение условий обитания организмов имеет огромное значение для оптимизации отношений человека с биосферой.

К абиотическим относятся климатические, эдафические, типографические, гидрохимические и гидрофизические факторы. Из климатических факторов основное экологическое значение имеют температура, свет и влажность. Наиболее важным климатическим фактором является температурный. Каждый организм способен жить в пределах определенного интервала температур. Оптимальная температура для большинства наземных животных и растений - от +15 до +30°С. У большинства животных и птиц есть способность к терморегуляции - поддержанию постоянной температуры своего тела. Из климатических факторов большое значение имеет лучистая энергия Солнца. К эдафическим факторам относится вся совокупность физических и химических свойств почв. К гидрофизическим и гидрофизическим факторам относятся все факторы, связанные с водой. Тела живых организмов в основном состоят из воды. Без воды не могут осуществляться процессы обмена веществ.

К биотическим факторам относят всю сумму воздействий, которые оказывают друг на друга живые существа - бактерии, растения, животные. Биотическими факторами являются взаимоотношения между собой организмов, прямые воздействия одних из них на другие. Иначе, характер биотических факторов определяется формой взаимосвязей и взаимоотношений живых организмов. Биотические факторы принято делить на три группы:

  1. Тонические взаимоотношения организмов на почве их совместного обитания: угнетение или подавление одним видом организмов развития других видов.

  2. Трофические поглощения.

  3. Генеративные отношения. Складываются на основе размножения.

К антропогенным факторам относятся воздействия на организмы общественной среды, т.е. все виды человеческой деятельности, которые приводят к изменению среды обитания организмов.

Абиотические и биотические факторы. Абиотические:• климатические (свет, влага, давление, температура, движение воздуха); • почвенные   (состав,   влагоемкость,   плотность, воздухопроницаемость); • орографические (рельеф, высота над уровнем моря, экспозиция склона); • химические (составы газового воздуха, солевой состав воды, кислотность); Биотические факторы - это совокупность влияний жизнедеятельности  одних организмов на жизнедеятельность других, а также на неживую природу.

Биотические: • фитогенные (растения); • зоогенные (животные); • микробиогенные (вирусы, бактерии); • антропогенные (деятельность человека).

К абиотическим относятся климатические, эдафические, типографические, гидрохимические и гидрофизические факторы. Из климатических факторов основное экологическое значение имеют температура, свет и влажность. Наиболее важным климатическим фактором является температурный. Каждый организм способен жить в пределах определенного интервала температур. Оптимальная температура для большинства наземных животных и растений - от +15 до +30°С. У большинства животных и птиц есть способность к терморегуляции - поддержанию постоянной температуры своего тела. Из климатических факторов большое значение имеет лучистая энергия Солнца. К эдафическим факторам относится вся совокупность физических и химических свойств почв. К гидрофизическим и гидрофизическим факторам относятся все факторы, связанные с водой. Тела живых организмов в основном состоят из воды. Без воды не могут осуществляться процессы обмена веществ.

К биотическим факторам относят всю сумму воздействий, которые оказывают друг на друга живые существа - бактерии, растения, животные. Биотическими факторами являются взаимоотношения между собой организмов, прямые воздействия одних из них на другие. Иначе, характер биотических факторов определяется формой взаимосвязей и взаимоотношений живых организмов. Биотические факторы принято делить на три группы:

  • Тонические взаимоотношения организмов на почве их совместного обитания: угнетение или подавление одним видом организмов развития других видов.

  • Трофические поглощения.

  • Генеративные отношения. Складываются на основе размножения.

Антропогенные факторы - особая группа экологических факторов.

Антропогенные факторы - это все формы деятельности человеческого общества, которые приводят к изменению природы как среды обитания и других видов и непосредственно сказываются на их жизни. Таким образом, каждый живой организм испытывает влияние неживой природы, организмов других видов, в том числе и человека, и, в свою очередь, оказывает воздействие на каждую из этих составляющих. Законы воздействия экологических факторов на живые организмы. Несмотря на многообразие экологических факторов и различную природу их происхождения, существуют некоторые общие правила и закономерности их воздействия на живые организмы. Для жизни организмов необходимо определенное сочетание условий. Если все условия среды обитания благоприятны, за исключением одного, то именно это условие становится решающим для жизни рассматриваемого организма. Оно ограничивает (лимитирует) развитие организма, поэтому называется лимитирующим фактором.

К антропогенным факторам относятся воздействия на организмы общественной среды, т.е. все виды человеческой деятельности, которые приводят к изменению среды обитания организмов.

Влияние абиотических факторов на живые организмы.

ТЕМПЕРАТУРА. Необходимость тепла для существования организмов обусловлена прежде всего тем, что все процессы жизнедеятельности возможны лишь на определенном тепловом фоне, определяемом количеством тепла и продолжительностью его действия.

Различают животные организмы:

  1. с постоянной температурой тела (теплокровные);

  2. с непостоянной температурой тела (хладнокровные).

Организмы с непостоянной температурой тела (рыбы, земноводные, пресмыкающиеся). Резкие колебания – зной, морозы – неблагоприятны для организмов. Животные выработали приспособления для борьбы с  охлаждением и перегревом. Например, с наступлением зимы растения и животные с непостоянной температурой тела впадают в состояние зимнего покоя. Интенсивность обмена веществ  у них резко снижается. Организмы с постоянной температурой тела (птицы, млекопитающие). У этих организмов произошли изменения во внутреннем строении органов, что способствовало их приспособленности к постоянной температуре тела.

СВЕТ. Свет обеспечивает все жизненные процессы, протекающие на Земле. Для организмов важна длина волны воспринимаемого излучения, его продолжительность и интенсивность воздействия. Например, у растений уменьшение длины светового дня и интенсивность освещения приводит к осеннему листопаду.

Важную роль в регуляции активности живых организмов и их развитии играет продолжительность и интенсивность воздействие света – фотопериод.  В умеренных широтах цикл развития животных и растений приурочен к сезонам года, и сигналом для подготовки к изменению температуры служит продолжительность светового дня, которая в отличие от других факторов всегда остается постоянной в определенном месте и в определенное время. Фотопериодизм – это пусковой механизм, включающий физиологические процессы, приводящие к росту и цветению растений весной, плодоношению летом, сбрасыванию листьев осенью у растений. У животных к накоплению жира к осени, размножению животных, их миграции, перелету птиц и наступлению стадии покоя у насекомых.

ВЛАЖНОСТЬ. Вода – это необходимый компонент клетки, поэтому ее количество в тех или иных местах обитания является ограничивающим фактором для растений и животных и определяет характер флоры и фауны данной местности.

Виды приспособленностей организмов к колебаниям температуры, влажности и света:

  1. теплокровность – поддержание организмом постоянной температуры тела;

  2. зимняя спячка – продолжительный сон животных в зимнее время года;

  3. анабиоз – временное состояние организма, при котором жизненные процессы замедленны до минимума и отсутствуют все видимые признаки жизни (наблюдается у холоднокровных и у животных зимой и в жаркий период времени);

  4. морозостойкость – способность организмов переносить отрицательные температуры;

  5. состояние покоя – приспособительное свойство многолетнего  растения, для которого характерно прекращение видимого роста и жизнедеятельности, отмирание наземных побегов у травянистых форм растений и опадение листьев у древесных форм;

  6. летний покой – приспособительное свойство раннецветущих растений (тюльпан, шафран) тропических районов, пустынь, полупустынь.

Экологическое значение основных абиотических факторов: освещенности, температуры, влажности и др.

ТЕМПЕРАТУРА. Температурные пределы жизни. Необходимость тепла для существования организмов обусловлена, прежде всего, тем, что все процессы жизнедеятельности возможны лишь на определенном тепловом фоне, определяемом количеством тепла и продолжительностью его действия.

В природе температура не постоянна. Резкие колебания – зной, морозы – неблагоприятны для организмов. Животные выработали приспособления для борьбы с  охлаждением и перегревом. Например, с наступлением зимы растения и животные с непостоянной температурой тела впадают в состояние зимнего покоя. Интенсивность обмена веществ  у них резко снижается. Так морозостойкость зимующих организмов увеличивается.

Организмы с постоянной температурой тела (птицы, млекопитающие). У этих организмов произошли изменения во внутреннем строении органов, что способствовало их приспособленности к постоянной температуре тела. Все это позволило представителям птиц и млекопитающим сохранять активность при резких перепадах температур и освоить все места обитания.

СВЕТ. Свет обеспечивает все жизненные процессы, протекающие на Земле. Для организмов важна длина волны воспринимаемого излучения, его продолжительность и интенсивность воздействия. Например, у растений уменьшение длины светового дня и интенсивность освещения приводит к осеннему листопаду.

По отношению к свету растения делят на:

  1. светолюбивые

  2. тенелюбивые

  3. теневыносливые

Важную роль в регуляции активности живых организмов и их развитии играет продолжительность и интенсивность воздействие света – фотопериод.  В умеренных широтах цикл развития животных и растений приурочен к сезонам года, и сигналом для подготовки к изменению температуры служит продолжительность светового дня, которая в отличие от других факторов всегда остается постоянной в определенном месте и в определенное время.

ВЛАЖНОСТЬ. Вода – это необходимый компонент клетки, поэтому ее количество в тех или иных местах обитания является ограничивающим фактором для растений и животных и определяет характер флоры и фауны данной местности.

Виды приспособленностей организмов к колебаниям температуры, влажности и света:

  1. теплокровность – поддержание организмом постоянной температуры тела;

  2. зимняя спячка – продолжительный сон животных в зимнее время года;

  3. анабиоз – временное состояние организма, при котором жизненные процессы замедленны до минимума и отсутствуют все видимые признаки жизни (наблюдается у холоднокровных и у животных зимой и в жаркий период времени);

  4. морозостойкость – способность организмов переносить отрицательные температуры;

  5. состояние покоя – приспособительное свойство многолетнего  растения, для которого характерно прекращение видимого роста и жизнедеятельности, отмирание наземных побегов у травянистых форм растений и опадение листьев у древесных форм;

  6. летний покой – приспособительное свойство раннецветущих растений (тюльпан, шафран) тропических районов, пустынь, полупустынь.

Понятие экологической ниши.

Экологическая ниша - совокупность всех факторов и ресурсов среды, в «пределах которой могут существовать виды в природе. Экологическая ниша -абстрактное понятие, показывающее, какие необходимы общие показатели условий и ресурсов среды для организмов.

Экологическая ниша отражает функциональную роль популяции в сообществе (биоценозе) живых организмов. Понятие «экологическая ниша» было введено в 1917 г. Гринеллом для определения роли вида в сообществе организмов (биоценозе).

Ниша характеризуется как пространство, занимаемое популяцией, "дом" и набор ресурсов, необходимых для ее существования.

Экологическая ниша - общая сумма всех требований организма к условиям существования, включая занимаемое им пространство, функциональную роль в сообществе и толерантность по отношению к факторам среды - температуре, влажности, кислотности, составу почвы.

Экологическая ниша - n-мерная фигура, гиперобъем, в пределах которого возможно поддержание жизни организмов. В понятие ниши включаются не только условия жизни (влажность, соленость, температура), но и ресурсы, необходимые для жизни.

Различают пространственную, трофическую и многомерную ниши.

Пространственная ниша - это ниша обитания. Трофическая ниша характеризует особенности питания, роль организма в сообществе.

Многомерная ниша - это диапазон всех условий, при которых живет и воспроизводит себя особь или популяция. Многомерная ниша - область, охватывающая диапазон толерантности по каждому фактору.

Фундаментальная (потетральная) ниша — это ниша, в которой физические условия оптимальны, отсутствует конкуренция, хищники и другие враги. Реализованная ниша - фактический диапазон условий существования организма. Реализованная ниша равна или меньше фундаментальной.

Два вида не могут занимать одну и ту же экологическую нишу (принцип Гаузе). Явление разделения экологической ниши в результате межвидовой конкуренции называется экологической диверсификацией. Диверсификация осуществляется по трем параметрам: пространственному размещению, пищевому рациону, распределению активности по времени.

Рассмотрим результаты опытов Гаузе с позиций понятия о экологической нише. Когда конкурировали P. aurelia и P. caudatum, P. aurelia имела реализованную нишу, а Р. caudatum ее лишилась и была вытеснена в конкурентной борьбе. Иначе говоря, произошло конкурентное исключение P. caudatum. Принцип конкурентного исключения, сформулированный Г.Ф. Гаузе для близких по экологии видов и известный в мировой литературе как принцип Гаузе может быть сформулирован так: одна ниша - один вид. Это, означает, что два вида не уживаются в одной экологической нише,

В случае, когда конкурировали P. aurelia и P. bursaria, каждый вид имел реализованную нишу, заметно отличающуюся от ниши другого вида. Следовательно, их сосуществование было связано с разграничением реализованных ниш.

Таким образом, способность видов существовать в одном биогеоценозе достигается расхождением требований к среде обитания, изменением образа жизни, т.е. разделением ниш.

Понятие о биоценозе, биогеоценозе и экосистеме.

Экосистема, или экологическая система - совокупность всех популяций разных видов, про-живающих на общей территории и взаимодейству-ющих с окружающей их средой (А. Тенсли, 1935) Экосистема = Биоценоз + Биотоп

Особенности экосистем:

 Открытая (есть входящий и исходящий потоки энергии)

 Автономная (если ее изолировать и обеспечить приток энергии,

то она сможет существовать практически неограниченное время)

 Проявляет способность к саморегуляции и самоподдержанию, т.е. у нее есть буфферность

 Обладает гомеостазом (относительной устойчивостью во

времени и пространстве)

 Размытость границ (как по вертикали, так и по горизонтали)

 Может существовать без какого-либо компонента (например, в болотных экосистемах нет почвы, в подземных (пещеры) нет притока световой энергии)

Биогеоценоз - совокупность на известном протяжении земной поверхности однородных природных явлений, имеющая свою особую специфику взаимодействий слагающих ее компонентов и определенный тип обмена веществом и энергией между собой и другими явлениями природы и представляющая собой внутреннее противоречивое единство, находящееся

в постоянном движении, развитии (по В.Н. Сукачеву, 1942)

Биоценоз (от греч. биос - жизнь, кэнос -общий) – совокупность популяций различных видов (сообщество), живущих и взаимодействующих в данном конкретном местообитании (К. Мебиус, 1877)

Биоценоз любой экосистемы состоит из трех функциональных групп организмов – продуцентов, консументов, редуцентов, которые выполняют определенную роль в сообществе. Продуценты в процессе фотосинтеза синтезируют органическое вещество из неорганических. Они являются

первичными аккумуляторами солнечной энергии. Через ряд консументов происходит перенос вещества и энергии, ранее накопленных в телах продуцентов. Редуценты разлагают органическое вещество продуцентов и консументов до простых неорганических, возвращая в окружающую среду атомы и молекулы, а также заключенную в них

энергию, накопленных в их телах в течение жизни. Благодаря совместному действию этих трех групп организмов поддерживается относительно замкнутый вещественный круговорот в экосистемах и биогеоценозах

ВЫВОД: нет "лишних" или "бесполезных" видов и организмов!!!

Структура биоценоза строится из следующих основных компонентов:

 Типы взаимодействий между популяциями

 Вертикальная ярусность

 Горизонтальная неоднородность

 Периодичность во времени (суточная и

сезонная)

 Пищевые цепи и пищевая сеть

Триединая концепция устойчивого развития

Устойчивое развитие (англ. sustainable development - поддерживаемое развитие) - такое развитие общества, при котором улучшаются условия жизни человека, а воздействие на окружающую среду остаётся в пределах хозяйственной емкости биосферы, так что не разрушается природная основа функционирования человечества. При устойчивом развитии удовлетворение потребностей осуществляется без ущерба для будущих поколений. Концепция устойчивого развития явилась логическим переходом от экологизации научных знаний и социально-экономического развития, бурно начавшимся в 1970-е годы, когда человечество столкнулось с проявлением глобальных экологических проблем. Реакцией на эту озабоченность было создание международных неправительственных научных организаций по изучению глобальных процессов на Земле, таких как Международная федерация институтов перспективных исследований (ИФИАС), Римский клуб (с его знаменитым докладом «Пределы роста»), Международный институт системного анализа и др. В 1972 году в Стокгольме (Швеция) состоялась Конференция ООН по окружающей среде, где были разработаны Программы ООН по окружающей среде (ЮНЕП), что ознаменовало включение международного сообщества на государственном уровне в решение экологических проблем, которые стали сдерживать социально-экономическое развитие. Стала развиваться экологическая политика и дипломатия, право окружающей среды, появилась новая институциональная составляющая — министерства и ведомства по окружающей среде. В 1980-х годах стали говорить об экоразвитии, развитии без разрушения, необходимости устойчивого развития экосистем. Всемирная стратегия охраны природы (ВСОП), принятая в 1980, впервые в международном документе содержала упоминание устойчивого развития. Вторая редакция ВСОП получила название «Забота о планете Земля — Стратегия устойчивой жизни» и была опубликована в октябре 1991. В ней подчеркивается, что развитие должно базироваться на сохранении живой природы, защите структуры, функций и разнообразия природных систем Земли, от которых зависят биологические виды. Для этого необходимо: сохранять системы поддержки жизни (жизнеобеспечения), сохранять биоразнообразие и обеспечить устойчивое использование ресурсов. Появились исследования по экологической безопасности как части национальной и глобальной безопасности. В 1980-е годы Программа ООН по окружающей среде (ЮНЕП) призывала к необходимости перехода к «развитию без разрушения». В 1980 году впервые получила широкую огласку концепция устойчивого развития во Всемирной стратегии сохранения природы, разработанной по инициативе ЮНЕП, Международного союза охраны природы (МСОП) и Всемирного фонда дикой природы. В 1987 году в докладе «Наше общее будущее» Международная комиссия по окружающей среде и развитию (МКОСР) уделила основное внимание необходимости «устойчивого развития», при котором «удовлетворение потребностей настоящего времени не подрывает способность будущих поколений удовлетворять свои собственные потребности». Эта формулировка понятия «устойчивое развитие» сейчас широко используется в качестве базовой во многих странах. На Конференции ООН по окружающей среде и развитию в Рио-де-Жанейро (1992) был представлен детальный анализ экологической ситуации в мире. В работе конференции участвовали главы государств и правительств, которым впервые пришлось принять трудное решение об изменении мировоззренческой стратегии человечества. Было признано, что возрастающий уровень благополучия экономически развитых стран недостижимы для развивающихся стран Азии, Африки и Латинской Америки. Было признано, что движение развивающихся стран по пути, которым пришли к своему благополучию развитые станы, невозможно, так как природа не выдержит такого роста потребления. В результате дискуссий была провозглашена необходимость перехода мирового сообщества на рельсы устойчивого развития. Основой решений стала работа комиссии Брунтланд (1987), выдвинувшей идею «sustainabledevelopment» (англ. sustain – поддерживать). В докладе этой комиссии ставилась целью создания мирового порядка, удовлетворяющего «нужды настоящего, не подвергая способность будущих поколений удовлетворять свои потребности». Однако итоги десятилетия, прошедшего после Конференции ООН в Рио-де-Жанейро, свидетельствуют о том, что проблема реализации модели устойчивого развития гораздо более сложная, чем предполагалось ранее. Теория и практика показали, что экологическая составляющая является неотъемлемой частью человеческого развития. В основе деятельности Международной комиссии по окружающей среде и развитию и её заключительного доклада «Наше общее будущее» была положена новая триединая концепция устойчивого (эколого-социально-экономического) развития (схема 11). Всемирный саммит ООН по устойчивому развитию (межправительственный, неправительственный и научный форум) в 2002 году подтвердил приверженность всего мирового сообщества идеям устойчивого развития для долгосрочного удовлетворения основных человеческих потребностей при сохранении систем жизнеобеспечения планеты Земля. Концепция устойчивого развития во многом перекликается с концепцией ноосферы, выдвинутой академиком В. И. Вернадским еще в середине XX века. Основными факторами устойчивого развития являются экономический, социальный и экологический факторы, которые и являются основой триединой концепции устойчивого развития. Экономическая составляющая подразумевает оптимальное использование природных ресурсов и использование экологичных технологий, включая добычу и переработку сырья, создание экологически приемлемой продукции, минимизацию, переработку и уничтожение отходов. Социальная составляющая устойчивости развития ориентирована на человека и направлена на сохранение стабильности социальных и культурных систем, в том числе, на сокращение числа разрушительных конфликтов между людьми. Важным аспектом этого подхода является справедливое разделение благ. Желательно также сохранение культурного капитала и многообразия в глобальных масштабах, а также более полное использование практики устойчивого развития, имеющейся в недоминирующих культурах. Для достижения устойчивости развития современному обществу придется создать более эффективную систему принятия решений, учитывающую исторический опыт и поощряющую плюрализм. Важно достижение не только внутри-, но и межпоколенной справедливости. В рамках концепции человеческого развития человек является не объектом, а субъектом развития. Опираясь на расширение вариантов выбора человека как главную ценность, концепция устойчивого развития подразумевает, что человек должен участвовать в процессах, которые формируют сферу его жизнедеятельности, содействовать принятию и реализации решений, контролировать их исполнение. Экологическая составляющая должна обеспечивать целостность биологических и физических природных систем. Особое значение имеет жизнеспособность экосистем, от которых зависит глобальная стабильность всей биосферы. Более того, понятие «природных» систем и ареалов обитания можно понимать широко, включая в них созданную человеком среду, такую как, например, города. Основное внимание уделяется сохранению способностей к самовосстановлению и динамической адаптации таких систем к изменениям, а не сохранение их в некотором «идеальном» статическом состоянии. Деградация природных ресурсов, загрязнение окружающей среды и утрата биологического разнообразия сокращают способность экологических систем к самовосстановлению. Согласование этих факторов устойчивого развития и их перевод на язык конкретных мероприятий, являющихся средствами достижения устойчивого развития — задача огромной сложности, поскольку все три элемента устойчивого развития должны рассматриваться сбалансировано. Важны также и механизмы взаимодействия этих трех концепций. Экономический и социальный элементы, взаимодействуя друг с другом, порождают такие новые задачи, как достижение справедливости внутри одного поколения (например, в отношении распределения доходов) и оказание целенаправленной помощи бедным слоям населения. Механизм взаимодействия экономического и экологического элементов породил новые идеи относительно стоимостной оценки и интернализации (учета в экономической отчетности предприятий) внешних воздействий на окружающую среду. Наконец, связь социального и экологического элементов вызывает интерес к таким вопросам как внутрипоколенное и межпоколенное равенство, включая соблюдение прав будущих поколений, и участия населения в процессе принятия решений.

Социально-экологический кризис и устойчивое развитие.

Экологические проблемы обусловлены, прежде всего, загрязнением окружающей среды, воздушного бассейна и Мирового океана, истощением природных ресурсов. Выделяют три основные составляющие экологической проблемы: биологическую, техническую и социально-экономическую. В основе биологической составляющей - разрушение экосистем, вымирание живых организмов, снижение производительности природы, ухудшение условий жизни людей; технической составляющей - несовершенная технология современного производства, высокая степень интенсификации хозяйственных комплексов; социально-экономической - бесконтрольное ведение хозяйства, погоня за сверхприбылью, потребительское отношение к природе, наличие волевого, административно-хозяйственного управления, нарушение научных принципов рационального природопользования.Причинысоциально-экологических проблем заключаются в разрыве между техническими возможностями человека и крайне примитивной стратегией выживания, в которой рост превалирует над устойчивостью, а количество населения - над его качеством. Социально -экологические проблемы обусловлены ростом населения (Численность людей, населяющих Землю, неуклонно возрастает на протяжении последних 2000 лет, но наиболее интенсивно - за последние 200 лет), ресурсным кризисом (Это понятие затрагивает земельные и энергетические ресурсы. Кризис земельных ресурсов обусловлен истощением почв, потерей плодородия. Энергетический кризис обусловлен переходом к использованию невозобновимых энергетических ресурсов (нефть, каменный уголь, природный газ) и изменением генофонда (Все эти негативные изменения в окружающей среде в конечном счете приводят к изменению генофонда, которое приобретает глобальные масштабы. Мутации (изменения генов), возникающие под влиянием как физических (все виды ионизирующего излучения), так и химических соединений чаще всего носят отрицательный характер). Устойчивое развитие (англ. sustainabledevelopment) – такое развитие общества, при котором улучшаются условия жизни человека, а воздействие на окружающую среду остается в пределах хозяйственной емкости биосферы, так что не разрушается природная основа функционирования человечества.При устойчивом развитии удовлетворение потребностей нынешнего поколения осуществляется без ущерба для будущих поколений. С экологической точки зрения устойчивое развитие должно обеспечивать целостность биологических и физических природных систем.

Глобальное загрязнение Мирового океана

Нефть и нефтепродукты.  Нефть представляет собой вязкую маслянистую жидкость, имеющую темно-коричневый цвет и обладающую слабой флуоресценцией. Нефть и нефтепродукты являются наиболее распространенными загрязняющими веществами в Мировом океане. К началу 80-х годов в океан ежегодно поступало около 16 млн.т. нефти, что составляло 10,23% мировой добычи. Наибольшие потери нефти связаны с ее транспортировкой из районов добычи. Аварийные ситуации, слив за борт танкерами промывочных и балластных вод,  все это обуславливает присутствие постоянных долей загрязнения на трассах морских путей. За последние 130 лет, начиная с 1964 года, пробурено около 12000 скважин в Мировом океане, из них только в Северном море 11000 и 1350 промышленных скважин оборудовано. Из-за незначительных утечек ежегодно теряется 10,1 млн.т. нефти. Большие массы нефти поступают в моря по рекам, с бытовыми и ливневыми стоками. Объем загрязнений из этого источника составляет 12,0 млн.т./год. Со стоками промышленности ежегодно попадает 10,5 1млн.т. нефти. Попадая в морскую среду, нефть сначала растекается в виде пленки, образуя слои различной мощности.  Нефтяная пленка изменяет состав спектра и интенсивность проникновения в воду света. Пропускание света тонкими пленками сырой нефти составляет 10% (280 нм), 70% (400нм). Пленка толщиной 40 мкм полностью поглощает инфракрасное излучение. Смешиваясь с водой, нефть образует эмульсию двух типов: прямую "нефть в воде" и обратную "вода в нефти". Прямые эмульсии, составленные капельками нефти диаметром до 10,5 мкм, менее устойчивы и характерны для нефти, содержащей поверхностноактивные вещества. При удалении летучих фракций, нефть образует вязкие обратные эмульсии, которые могут сохраняться на поверхности, переноситься течением, выбрасываться на берег и оседать на дно. Пестициды .  Пестициды составляют группу искусственно созданных веществ, используемых для борьбы с вредителями и болезнями растений. Пестициды делятся на следующие группы: инсектициды  для борьбы с вредными насекомыми, фунгициды и бактерициды для борьбы с бактериальными болезнями растений, гербициды  против сорных растений. Установлено, что пестициды уничтожая вредителей, наносят вред многим полезным организмам и подрывают здоровье биоценозов. В сельском хозяйстве давно уже стоит проблема перехода от химических (загрязняющих среду) к биологическим (экологически чистым) методам борьбы с вредителями. В настоящее время более 15 млн.т. пестицидов поступает на мировой рынок. Около 11,5 млн.т. этих веществ уже вошло в состав наземных и морских экосистем водным путем. Промышленное производство пестицидов сопровождается появлением большого количества побочных продуктов, загрязняющих сточные воды. В водной среде чаще других встречаются представители инсектицидов, фунгицидов и гербицидов. Синтезированные инсектициды делятся на три основных группы: хлорорганические, фосфорорганические и карбонаты. Хлорорганические инсектициды получают путем хлорирования ароматических и гетероциклических жидких углеводородов. К ним относятся ДДТ и его производные, в молекулах которых устойчивость алифатических и ароматических групп в совместном присутствии возрастает, всевозможные хлорированные производные хлородиена (элдрин). Эти вещества имеют период полураспада до нескольких десятков лет и очень устойчивы к биодеградации. В водной среде часто встречаются полихлорбифенилы  производные ДДТ без алифатической части, насчитывающие 1210 гомологов и изомеров. За последние 140 лет использовано более 11,2 млн.т.           полихлорбифенилов в производстве пластмасс, красителей, трансформаторов, конденсаторов. Полихлорбифенилы (ПХБ) попадают в окружающую среду в результате сбросов промышленных сточных вод и сжигания твердых отходах на свалках. Последний источник поставляет ПБХ в атмосферу, откуда они с атмосферными осадками выпадают во все районах Земного шара. Так в пробах снега, взятых в Антарктиде, содержание ПБХ составило 1 0,03  1,2 кг./л.  Синтетические поверхностноактивные вещества .  Детергенты (СПАВ) относятся к обширной группе веществ, понижающих поверхностное натяжение воды. Они входят в состав синтетических моющих средств (СМС), широко применяемых в быту и промышленности. Вместе со сточными водами СПАВ попадают в материковые воды и морскую среду. СМС содержат полифосфаты натрия, в которых растворены детергенты, а также ряд добавочных ингредиентов, токсичных для водных организмов: ароматизирующие вещества, отбеливающие реагенты (персульфаты, пербораты), кальцинированная сода, карбоксиметилцеллюлоза, силикаты натрия. В зависимости от природы и структуры гидрофильной части молекулы СПАВ делятся на анионоактивные, катионоактивные, амфотерные и неионогенные. Последние не образуют ионов в воде. Наиболее распространенными среди СПАВ являются анионоактивные вещества. На их долю приходится более 15% всех про изводимых в мире СПАВ. Присутствие СПАВ в сточных водах промышленности связано с использованием их в таких процессах, как флотационное обогащение руд, разделение продуктов химических технологий, получение полимеров, улучшение условий бурения нефтяных и газовых скважин, борьба с коррозией оборудования. В сельском хозяйстве СПАВ применяется в составе пестицидов.   Cоединения с канцерогенными свойствами. Канцерогенные вещества  это химически однородные соединения, проявляющие трансформирующую активность и способность вызывать канцерогенные, тератогенные (нарушение процессов эмбрионального развития) или мутагенные изменения в организмах. В зависимости от условий воздействия они могут приводить к ингибированию роста, ускорению старения, нарушению индивидуального развития и изменению генофонда организмов. К веществам, обладающим канцерогенными свойствами, относятся хлорированные алифатические углеводороды, винилхлорид, и особенно,  полициклические ароматические углеводороды (ПАУ). Максимальное количество ПАУ в современных данных осадках Мирового океана (более 100 мкг/км массы сухого вещества) обнаружено в тентонически-активных зонах, подверженным глубинному термическому воздействию. Основные антропогенные источники ПАУ в окружающей среде  это пиролиз органических веществ при сжигании различных материалов, древесины и топлива.   Тяжелые металлы.  Тяжелые металлы (ртуть, свинец, кадмий, цинк, медь, мышьяк) относятся к числу распространенных и весьма токсичных загрязняющих веществ. Они широко применяются в различных промышленных производствах, поэтому, несмотря на очистные мероприятия, содержание соединения тяжелых металлов в промышленных сточных водах довольно высокое. Большие массы этих соединений поступают в океан через атмосферу. Для морских биоценозов наиболее опасны ртуть, свинец и кадмий. Ртуть переносится в океан с материковым стоком и через атмосферу. При выветривании осадочных и изверженных пород ежегодно выделяется 13,5 1тыс.т. ртути. В составе атмосферной пыли содержится около 112 тыс.т. ртути, причем значительная часть   антропогенного происхождения. Около половины годового промышленного производства этого металла (1910 тыс.т./год) различными путями попадает в океан. В районах, загрязняемых промышленными водами, концентрация ртути в растворе и взвесях сильно повышается. При этом некоторые бактерии переводят хлориды в высокотоксичную метилртуть. Заражение морепродуктов неоднократно приводило к ртутному отравлению прибрежного населения. К 1977 году насчитывалось 12800 жертв болезни Миномата, причиной которой послужили отходы предприятий по производству хлорвинила и ацетальдегида, на которых в качестве катализатора использовалась хлористая ртуть. Недостаточно очищенные сточные воды предприятий поступали в залив Минамата. Свинец  типичный рассеянный элемент, содержащийся во всех компонентах окружающей среды: в горных породах, почвах, природных водах, атмосфере, живых организмах. Наконец, свинец активно рассеивается в окружающую среду в процессе хозяйственной деятельности человека. Это выбросы с промышленными и бытовыми стоками, с дымом и пылью промышленных предприятий, с выхлопными газами двигателей внутреннего сгорания. Миграционный поток свинца с континента в океан идет не только с речными стоками, но и через атмосферу. С континентальной пылью океан получает 12030 т. свинца в год.Сброс отходов в море с целю захоронения  (дампинг). Многие страны, имеющие выход к морю, производят морское захоронение различных материалов и веществ, в частности грунта, вынутого при дноуглубительных работах, бурового шлака, отходов промышленности, строительного мусора, твердых отходов, взрывчатых и химических веществ, радиоактивных отходов. Объем захоронений составил около 10% от всей массы загрязняющих веществ, поступающих в Мировой океан. Основанием для дампинга в море служит возможность морской среды к переработке большого количества органических и неорганических веществ без особого ущерба воды. Однако эта способность не беспредельна. Поэтому дампинг рассматривается как вынужденная мера, временная дань общества несовершенству технологии. В шлаках промышленных производств присутствуют разнообразные органические вещества и соединения тяжелых металлов. Бытовой мусор в среднем содержит (на массу сухого вещества) 40% органических веществ; 10,56% азота; 10,44% фосфора; 10,155% цинка; 10,085% свинца; 10 % ртути; 10,001% кадмия. Во время сброса при прохождении материала сквозь столб воды, часть загрязняющих веществ переходит в раствор, изменяя качество воды, другая сорбируется частицами взвеси и переходит в донные отложения. Одновременно повышается мутность воды. Наличие органических веществ часто приводит к быстрому расходованию кислорода в воде и нередко к его полному исчезновению, растворению взвесей, накоплению металлов в растворенной форме, появлению сероводорода. Присутствие большого количества органических веществ создает в грунтах устойчивую восстановительную среду, в которой возникает особый тип иловых вод, содержащих сероводород, аммиак, ионы металлов. Воздействию сбрасываемых материалов в разной степени подвергаются организмы бентоса и др. В случае образования поверхностных пленок, содержащих нефтяные углеводороды и СПАВ, нарушается газообмен на границе воздух  вода. Загрязняющие вещества, поступающие в раствор, могут аккумулироваться в тканях и органах гидробионтов и оказывать токсическое воздействие на них. Сброс материалов дампинга на дно и длительная повышенная мутность придонной воды приводит к гибели от удушья малоподвижные формы бентоса. У выживших рыб, моллюсков и ракообразных сокращается скорость роста за счет ухудшения условий питания и дыхания. Нередко изменяется видовой состав данного сообщества. При организации системы контроля за сбросами отходов в море решающее значение имеет определение районов дампинга, определение динамики загрязнения морской воды и донных отложений. Для выявления возможных объемов сброса в море необходимо проводить расчеты всех загрязняющих веществ в составе материального сброса.    Тепловое загрязнение. Тепловое загрязнение поверхности водоемов и прибрежных морских акваторий возникает в результате сброса нагретых сточных вод электростанциями и некоторыми промышленными производствами. Сброс нагретых вод во многих случаях обуславливает повышение температуры воды в водоемах на 16 градусов Цельсия. Площадь пятен нагретых вод в прибрежных районах может достигать 130 кв.км. Более устойчивая температурная стратификация препятствует водообмену поверхностным и донным слоем. Растворимость кислорода уменьшается, а потребление его возрастает, поскольку с ростом температуры усиливается активность аэробных бактерий, разлагающих органическое вещество. Усиливается видовое разнообразие фитопланктона и всей флоры водорослей. На основании обобщения материала можно сделать вывод, что эффекты антропогенного воздействия на водную среду проявляются на индивидуальном и популяционно-биоценотическом уровнях, а длительное действие загрязняющих веществ приводит к упрощению экосистемы.

Проблема обеспеченности природными ресурсами человечества.

Изменения биосферы в результате человеческой деятельности стремительны. За ХХ век из недр извлечено полезных ископаемых больше, чем за всю историю цивилизации. Размещение природных ресурсов по планете характеризуются крайней неравномерностью. Это объясняется различиями в климатических и тектонических процессах на земле, различными условиями образования полезныхископаемых в прошлые геологические эпохи. До начала ХХ века основным энергоресурсом была древесина, затем уголь. Ему на смену пришли добыча и потребление иных видов топлива – нефти и газа. Эра нефти дала толчок интенсивному развитию экономики, что потребовало, в свою очередь, увеличения производства и потребления ископаемого топлива. Каждые 13 лет потребности в энергии удваивались. Общемировые запасы условного топлива слагаются, в первую очередь, из запасов угля (60%), нефти и газа (27%). В совокупном мировом производстве иная картина – на уголь приходится более 30%, а на нефть и газ – более 67%. Если следоватьпрогнозам оптимистов, то мировых запасов нефти должно хватить на 2-3 столетия. Пессимисты же считают, что имеющиеся запасы нефти могут обеспечить потребности цивилизации лишь несколько десятков лет. Конечно, эти цифры носят условный характер. Однако вывод напрашивается один: необходимо учитывать ограниченность природных ресурсов, к тому же увеличение добычи полезных ископаемых оборачивается и экологическими проблемами.Использование энергетических ресурсов – один из показателей уровня развития цивилизации. Потребление энергии развитыми государствами значительно превосходят соответствующие показатели стран развивающегося мира. Только 10 ведущих промышленных стран потребляют 70% общего количества вырабатываемой в мире энергии.Большинство развивающихся стран не имеют крупных запасов нефти и находятся в зависимости от этого природного ресурса. в наименее же развитых странах потребности в энергетических ресурсов покрываются за счет дров и др. видов биомассы. В результате этого энергетическая ситуация для многих стран третьего мира оборачивается сложными проблемами (сведением лесов втом числе). «Дровяной дефицит» – это специфическая форма проявления мирового энергетического кризиса. Сам же энергетический кризис можно определить как напряженное состояние, сложившееся между потребностями современного общества в энергии и запасами сырья для энергетики. Он показал миру ограниченность запасов источников энергии в природе, а также расточительный характер потребления наиболее дефицитных энергоносителей. Благодаря энергетическому кризису произошел переход мировой экономики с экстенсивного пути развития на интенсивный, сократилась энерго- и сырьеемкость мирового хозяйства, а обеспеченность его топливными и минеральными ресурсами (благодаря разработке новых месторождений даже стала возрастать).В системе международного разделения труда развитые страны выступают основными потребителями сырьевых ресурсов, а развивающиеся – производителями, что определяется как уровнем их экономического развития, так и размещением полезных ископаемых на земле. Ресурсообеспеченность – это соотношение между величиной запасов природных ресурсов и размером их использования. Уровень ресурсообеспечения определяется потенциалом собственной ресурсной базы страны, а также иными фактами, например, политическими и военно-стратегическими соображениями, международным разделением труда и др. Однако пример Японии, Италии и др. стран показывает, что наличие или отсутствие собственных сырьевых ресурсов в условиях современного мирового хозяйства не является решающим фактором в развитии страны. Часто именно в странах с богатой ресурсной базой имеет место ресурсная расточительность. К тому же в богатых ресурсами странах часто низок коэффициент использования вторичных ресурсов. Рост потребления сырья к началу 70-х годов превысил прирост его разведанных запасов, снизилась ресурсообеспеченность. Тогда и появились первые мрачные прогнозы о скором исчерпании мировых ресурсов. Произошел переход к рациональному ресурсопотреблению.Земельные ресурсы, почвенный покров – это основа всей живой природы. Лишь 30% земельного фонда мира – сельскохозяйственные угодья, используемые человечеством для производства продуктов питания, остальная территория – горы, пустыни, ледники, болота, леса и т.д. На протяжении всей истории цивилизации рост населения сопровождался расширением площади обрабатываемых земель. За истекшие 100 лет было расчищено больше земельных площадей для оседлого земледелия, чем за все предшествующие века. Сейчас в мире практически не осталось земли для сельскохозяйственного освоения, лишь леса и экстремальные территории. К тому же во многих странах мира земельные ресурсы быстро уменьшаются (рост городов, промышленности и др.).И если в развитых странах рост урожайности и продуктивности сельского хозяйства компенсирует убыль земель, то в развивающихся странах картина обратная. Это создает избыточное давление на почвы во многих густо населенных районах развивающегося мира. До половины пахотных земель в мире используется до истощения, с превышением разумных нагрузок. Еще один аспект проблемы обеспечения земельными ресурсами – деградация почв. Издавна бедой земледельцев была эрозия почв и засухи, а разрушенная почва восстанавливается очень медленно. В естественных условиях на это уходит не одна сотня лет. Ежегодно только вследствие эрозии из сельскохозяйственного оборота выпадает 7 млн. га земель, а из-за заболачивания – засоления, выщелачивания – еще 1,5 млн. га. И хотя эрозия – это естественный геологический процесс, в последние годы он явно усиливается, часто по причине неосмотрительной хозяйственной деятельности человека. Опустынивание также не новый процесс, но он, как и эрозия, ускорился в новейшее время. Быстрый рост населения развивающихся стран усугубляет многие процессы, увеличивая нагрузку на земельный фон планеты. Сокращение земельных ресурсов в развивающихся странах, вызванное природными, социально- экономическими факторами, лежит в основе политических и этнических конфликтов. Деградация земель представляет собой серьезную проблему. Борьба с сокращением земельных ресурсов – важнейшая задача человечества. На нашей планете лесами занято 30% территории. Четко прослеживаются два лесных пояса: северный, с преобладанием хвойных пород деревьев, и южный – влажные тропические леса развивающихся стран. Наибольшая площадь лесов сохранилась в Азии, Латинской Америке. Лесное богатство мира велико, но не безгранично. В развитых странах Западной Европы и Северной Америки, объем прироста древесины превышает объем лесозаготовок и ресурсный потенциал растет. Для большинства же стран третьего мира характерно снижение обеспеченности лесными ресурсами. В целом лесные ресурсы мира сокращаются (за последние 200 лет – в 2 раза). Уничтожение лесов такими темпами имеет катастрофические последствия для всего мира: сокращается поступление кислорода, усиливается парниковый эффект, изменяется климат. На протяжении многих веков сокращение площади лесов на планете практически не препятствовало прогрессу человечества. Но начиная с недавнего времени этот процесс стал отрицательно сказываться на экономическом и экологическом состоянии многих стран, особенно стран третьего мира. Охрана лесов и лесовосстановительные работы необходимы для дальнейшего существования человечества. Вода является обязательным условием существования всех живых организмов на земле. Большие объемы воды на планете создает впечатление ее изобилия и неисчерпаемости. Долгие годы освоение водных ресурсов велось практически бесконтрольно. Воды сейчас недостаточно там, где ее нет в природе, где ее интенсивно используют, где она стала непригодной для употребления. Около 60% общей площади суши приходится на зоны, в которых нет достаточного количества пресной воды. Четвертая часть человечества ощущает ее недостаток, а еще свыше 500 млн. жителей страдают от недостатка и плохого качества. Водные ресурсы распределены по континентам неравномерно. Азия, из-за большой численности высоких темпов прироста населения, попадает в число самых бедных водой континентов. Многие страны Юго-западной и Южной Азии, а также Восточной Африки вскоре столкнутся с нехваткой воды, что не только ограничит развитие сельского хозяйства и промышленности, но и может привести к политическим конфликтам. Потребность в пресной воде испытывают население, промышленность и сельское хозяйство. Однако большая часть вод – это воды мирового океана, непригодная не только для питья, но и для технологических нужд. Несмотря на достижения современной технологии, проблемы надежного водоснабжения для многих стран мира остается нерешенной. Увеличение промышленного расходования воды связано не только с быстрым ее развитием, но и с ростом водоемкости производства. Много воды требует химическая промышленность, металлургия, производство бумаги. На сельское хозяйство мира приходится около 70% всего мирового водозабора. И сейчас большинство крестьян в мире используют те же методы орошения, что и их предки 5000 лет назад. Особенно высокой неэффективностью отличаются ирригационные системы стран третьего мира. Можно сделать следующий вывод – дефицит пресной воды растет. Причинами этого являются: быстрый рост населения, увеличение расходования пресных вод для сельского хозяйства и промышленности, сброс сточных вод и отходов промышленности, снижение способности водоемов к самоочищению. Ограниченность, неравномерное распределение ресурсов пресных вод и растущее загрязнение вод являются одной из составляющих глобальной ресурсной проблемой человечества.Океан занимает большую часть поверхности земли – 70%. Он является поставщиком половины кислорода воздуха и 20% белковой пищи человечества. Свойство морской воды – тепловая генерация, циркуляция течений и атмосферных потоков – определяют климат и погоду на земле. Полагают, что именно Мировой океан утолит жажду человечества. Ресурсный потенциал океана во многих отношениях может восполнить истощающиеся запасы суши.

Основы рационального природопользования.

Рациональное природопользование - планомерное, научно обоснованное преобразование окружающей среды по мере совершенствования материального производства на основе комплексного использования невозобновляемых ресурсов в цикле «производство - потребление - вторичные ресурсы» при условии сохранения и воспроизводства возобновляемых природных ресурсов.Изучение процессов, протекающих в биосфере, и влияние на них хозяйственной деятельности человека показывает, что только создание экологически безотходных и малоотходных производств может предотвратить оскудение ресурсов и деградацию окружающей среды. Хозяйственная деятельность людей должна строиться по принципу природных экосистем, которые экономно расходуют вещество и энергию и в которых отходы одних организмов служат средой обитания для других, т.е. осуществляется круговорот веществ.В ноябре 1979 года в Женеве было созвано совещание по сотрудничеству в области охраны окружающей среды и была принята декларация, которая гласит: «Важнейшими условиями малоотходной и безотходной технологии и использования отходов являются охрана окружающей среды и рациональное использование ресурсов». МАЛООТХОДНАЯ ТЕХНОЛОГИЯ (а. low-waste technology; н. abganggarmes Verfahren; ф. technologie а peu de dechets; и. tecnologia de poсоs desechos, tecnologia de poсоs residuos) — направление комплексного использования полезных ископаемых и защиты окружающей среды от загрязнений, которое предполагает максимально возможное извлечение на предприятиях из сырья всех ценных компонентов при минимальном выделении отходов в твёрдом, жидком и газообразном виде. По сравнению с безотходной технологией, обеспечивающей экологически безвредное производство с полной утилизацией или захоронением отходов, водооборотом, рекультивацией отвалов. Малоотходная технология лишь частично решает задачу комплексного использования сырья и предотвращения необратимых изменений в окружающей природной среде. Малоотходная технология подразумевает создание и внедрение на предприятиях процессов получения дополнительной продукции из отходов; разработку водооборотных циклов на базе локальной очистки сточных вод; разработку процессов переработки отходов производства во вторичные материальные ресурсы. Необходимость в создании малоотходной технологии возникла в середине 20 века в связи с катастрофически растущим загрязнением гидросферы, атмосферы и биосферы в результате накопления твёрдых, жидких и газообразных отходов. Масштабы загрязнения во многих районах делают невозможной их естественную нейтрализацию. Малоотходная технология способствует расширению минерально-сырьевой базы, сокращению живого и овеществлённого труда на добычу и переработку полезных ископаемых, повышению производительности труда, снижению капитальных и эксплуатационных затрат на производство продукции, повышению возможности извлечения полезных компонентов из минерального сырья за счёт комплексного использования, а не количественными увеличениями добычи и переработки. Один из видов малоотходной технологии — бессточная система промышленного использования воды, при которой большая часть её находится в водооборотном цикле при небольшой подпитке свежей водой. Различают бессточные системы с полной утилизацией выделяемых компонентов, с частичной их утилизацией или без их утилизации (т.е. со складированием отходов). Малоотходные технологии должны быть экологически чистыми, технически реально осуществимыми и экономически целесообразными. В CCCP малоотходная технология применяется на предприятиях, перерабатывающих нефелиновый концентрат на глинозём, кальцинированную соду, поташ и цемент; сфеновый концентрат — на титановые пигменты и наполнители сернокислотной технологии и др. Проблема рационального использования попутно добываемых пород (особенно пород вскрыши) и отходов обогащения полезных ископаемых решается путём использования их для производства строительных материалов, изготовления цемента, извести, стекла, силикатного кирпича, огнеупоров и др.

Поток энергии и круговорот химических элементов в экосистеме.

Любая экосистема состоит из биотических и абиотических компонентов, которые тесно взаимодействуют между собой, обмениваются веществом и энергией: живые организмы поглощают вещества и энергию из окружающей среды и возвращают их обратно вокружающую среду в процессе жизнедеятельности. Все живые организмы являются потребителями пищи, т.е. вещества и энергии. В процессе дыхания происходит высвобождение энергии из богатых ею веществ, полученных с пищей. "Энергия не создается и не исчезает"- гласит первый закон термодинамики. Она существует в разнообразных формах - световая, химическая, механическая, звуковая, тепловая, электрическая и.т.д. И все эти формы могут переходить одна в другую. Энергию можно определить как способность совершать работу. И все живые организмы можно рассматривать как работающие "машины", которым необходим постоянный притокэнергии извне. Живые организмы могут использовать только две формы энергии - световую и химическую. По источнику энергии все живые организмы подразделяются на фототрофные и хемотрофные. К фототрофным относятся организмы, которые синтезируют все необходимые им органические вещества за счет энергии света (фотосинтез), к ним относятся все растения и сине-зеленые водоросли. Хемотрофные организмы синтезируют органические вещества за счет энергии химических связей различных веществ. К ним относятся все животные и бактерии. В результате фотосинтеза все зеленые растения улавливают 1% солнечной энергии, от всей падающей на поверхность Земли солнечной энергии, и эта энергия обеспечивает жизнедеятельность всех живущих на планете организмов (закон 1% энергии). При переходе энергии с предыдущего трофического уровня на последующий 90 % энергии затрачивается на процессы жизнедеятельности и энтропию. Поэтому при переходе с одного трофического уровня экологической пирамиды на другой потребляется в среднем 10% энергии биомассы или вещества в энергетическом выражении (закон Линдемана). Поэтому пирамида энергии реально отражает поток энергии в экосистемах и всегда правильной формы. КРУГОВОРОТ ВЕЩЕСТВ и превращение энергии, многократно («бесконечно») повторяющийся процесс совместного, взаимосвязанного превращения и перемещения веществ в природе, носящий более или менее циклический (круговой) характер. Вещества, участвующие в круговороте, циркулируют между атмосферой, почвой, гидросферой и живыми организмами, являющимися основным звеном круговорота. Круговорот веществ происходит в биогеоценозе со времени зарождения на Земле жизни и является непременным условием её существования. Он осуществляется на всех уровнях – от молекулярного до биосферного. Складывается из отдельных процессов круговорота неорганических (вода, углерод, азот, сера, фосфор и др.) и органических (углеводы, белки и др.) веществ. В процессе круговорота происходит потеря веществ и их видоизменение. Все циклы круговорота веществ неразрывно связаны с превращением энергии: потенциальная энергия химиче-ских связей сложных органических молекул переходит в другие виды энергии, используемые на синтез новых соединений. Однонаправленный её поток проходит через все звенья пищевой цепи – от биомассы растений (продуценты) к животным (консументы), микроорганизмам и некоторым беспозвоночным (редуценты). На каждой ступени этого пути энергия частично теряется, а затем происходит её окончательный вынос в околоземное и космическое пространство, прежде всего через процессы дыхания и теплоотдачи (см. схему при ст. Пищевая цепь).

Пищевые цепи и трофические уровни, пищевые сети.

Через ряд организмов происходит перенос вещества и энергии, и каждый предыдущий организм поставляет последующему сырье и энергию в виде пищи. Такая последовательность организмов называется пищевой цепью, а каждое ее звено - трофическим уровнем (от греч. трофос-питание). Первый трофический уровень занимают продуценты, или автотрофы. Ко второму, третьему и.т.д. уровням относятся консументы первого порядка, консументы второго порядка, третьего и. т.д. Пищевые цепи разделяют на два основных типа - пастбищные и детритные: 1. Пастбищные цепи начинаются с зеленого растения и ведут к организмам, поедающим эти растения, а затем к хищникам, питающимися растительноядными животными, или паразитам; 2. Детритные цепи начинаются от мертвого органического вещества отмерших организмов или их частей и далее ведут к организмам, питающимися этим мертвым органическим веществом (детритофагам) или их консументам (хищникам - гиена, кондоры и др.). Совокупность пищевых (трофических) цепей данного биоценоза образует его пищевую (трофическую) сеть.

Экологические пирамиды

Пищевые сети служат основой для построения экологических пирамид. Простейшими из них являются пирамиды численности, которые отражают количество организмов (отдельных особей) на каждом трофическом уровне. Для удобства анализа эти количества отображаются прямоугольниками, длина которых пропорциональна количеству организмов, обитающих в изучаемой экосистеме, либо логарифму этого количества. Часто пирамиды численности строят в расчёте на единицу площади (в наземных экосистемах) или объёма (в водных экосистемах).В пирамидах численности дерево и колосок учитываются одинаково, несмотря на их различную массу. Поэтому более удобно использовать пирамиды биомассы, которые рассчитываются не по количеству особей на каждом трофическом уровне, а по их суммарной массе. Построение пирамид биомассы – более сложный и длительный процесс.Пирамиды биомассы не отражают энергетической значимости организмов и не учитывают скорость потребления биомассы. Это может приводить к аномалиям в виде перевёрнутых пирамид. Выходом из положения является построение наиболее сложных пирамид – пирамид энергии. Они показывают количество энергии, прошедшее через каждый трофический уровень экосистемы за определённый промежуток времени (например, за год – чтобы учесть сезонные колебания). В основание пирамиды энергии часто добавляют прямоугольник, показывающий приток солнечной энергии. Пирамиды энергии позволяют сравнивать энергетическую значимость популяций внутри экосистемы. Так, доля энергии, проходящей через почвенных бактерий, несмотря на их ничтожную биомассу, может составлять десятки процентов от общего потока энергии, проходящего через первичных консументов.

Продуктивность биоценозов

Органическое вещество, производимое автотрофами, называется первичной продукцией. Скорость накопления энергии первичными продуцентами называется валовой первичной продуктивностью, а скорость накопления органических веществ – чистой первичной продуктивностью. ВПП примерно на 20 % выше, чем ЧПП, так как часть энергии растения тратят на дыхание. Всего растения усваивают около процента солнечной энергии, поглощённой ими. При поедании одних организмов другими вещество и пища переходят на следующий трофический уровень. Количество органического вещества, накопленного гетеротрофами, называется вторичной продукцией. Поскольку гетеротрофы дышат и выделяют непереваренные остатки, в каждом звене часть энергии теряется. Это накладывает существенное ограничение на длину пищевых цепей; количество звеньев в них редко бывает больше 6. Отметим, что эффективность переноса энергии от одних организмов к другим значительно выше, чем эффективность производства первичной продукции. Средняя эффективность переноса энергии от растения к животному составляет около 10 %, а от животного к животному – 20 %. Обычно растительная пища энергетически менее ценна, так как в ней содержится большое количество целлюлозы и древесины, не перевариваемых большинством животных.Изучение продуктивности экосистем важно для их рационального использования. Эффективность экосистем может быть повышена за счёт повышения урожайности, уменьшения помех со стороны других организмов (например, сорняков по отношению к сельскохозяйственным культурам), использования культур, более приспобленных к условиям данной экосистемы. По отношению к животным необходимо знать максимальный уровень добычи (то есть количество особей, которые можно изъять из популяции за определённый промежуток времени без ущерба для её дальнейшей продуктивности).

. Модели мира. Работы Римского клуба

В последнее время с целью оценки и прогнозирования кризисных мировых или глобальных ситуаций ,создающих угрозу существования природной среде (биосфере) и человеческому обществу стали создавать модели мира. В 70-х годах 20 века стали появляться работы, где применялась технология экономических исследований к эколого-экономическим проблемам глобальной экологии. В 1968 году по инициативе А. Печчеи была организована международная конференция, куда были приглашены ведущие ученые, руководители научно-исследовательских институтов и менеджеры из многих стран для рассмотрения экологических проблем. Организатор конференции был уверен в том, что экологические проблемы являются общими для мирового сообщества и что их решение возможно только усилиями наций. На конференции был утвержден международный исследовательский центр «Римский клуб», перед которым была поставлена задачас помощью точных научных методов исследовать состояние окружающей среды и предложить наиболее рациональную стратегию для решения экологических проблем. На первом учредительном собрании было сделано два вывода: 1)темпы роста населения, использование природных ресурсов и изменение окр.среды указывают на быстрое истощение природных ресурсов ,что приведет к замедлению материального прогресса и вызовет общественные конфликты, политическую борьбу и обнищание людей 2) в современном обществе эти проблемы не воспринимаются достаточно серьезно ,поэтому клубу необходимо привлечь известных ученых с мировым именем для исследования экологических проблем в глобальном плане и познакомить с результатми исследований широкую общественность. В этих целях клуб привлек к исследованиям Дж. Форрестера и группу ученых во главе с Д. Медоузом. Итоги проведенных исследований были опубликованы в книге «Границы роста» в 1972. Модели мира, составленные этими учеными ,состояли из пяти секторов. У Форрестера: 1) народонаселение 2) промышленное производство 3)сельскохозяйственное производство 4)природные ресурсы 5)состояние природной среды. У Медоуза : 1)ускоренные темпы индустриализации 2)быстры прирост населения 3)голод 4)истощение 5)загрязнение природной среды. Моделирование показало что1 ) истощение природных ресурсов 21 веке вызовет в первой половине замедление роста промышленности и сель.хозяйства, резкое падение численности населения и , экологическую катасрофу 2) при возможности получения неограниченного количества ресурсов катастрофа наступит от чрезмерного загрязнения окружающей среды 3)при допущении что общество может найти путь эффективной охраны природы, пока не исчерпаются резервы пахотной земли, затем произойдет катастрофа. В 1977 были опубликованы результаты моделирования Месаровича и Пестеля, которые показали, что можно ожидать не один глобальный, а несколько региональных кризисов. Это продовольственный кризис в Юго-восточной Азии из-за отставания темпов роста продуктов от темпов роста населения Однако первые модели мира еще далеко не адекватны реальности. В 1980 МИД США составило доклад о состоянии и прогнозах изменения окр.сруды к 2000 году (Глобал 2000), где отмечалось что в ближайшее будущее рост населения и потребления ресурсов должен быть стабилизирован, порог насыщения биосферы народонаселением и цивилизацией неизвестен, необходимо уменьшить противоречия между богатыми и бедными. Одна из последних моделей разработана Л. Брауном. Он считает, что для выживания человечества необходимо политическое переустройство мира и ликвидация зияющей пропасти между бедными и богатыми в разных странах. Другим примером глобального моделирования послужила оценка последствий атомной войны. Прямое разрушение, гибель от взрыва, убийственная радиация и инфекционные заболевания – это прямая опасность. Но основная опасность связана с климатичсекими последствиями ис такими изменениями биосферы, которые пережить человечество не сможет. Ученый С. Крудцен выявил, что высокие концентрации энергии при достаточном доступе кислорода поражают самоподдерживающиеся пожары – «огненные торнадо». В 1983 Александров и Степчиков показали, что ядерный конфликт может првисети к ядерной земе. В 1983 на конференции «Мир после ядерной войны» были представлены 2 модели. В моделях Нац.центра климатических исследований США и Вычислительного центра Академии наук СССР картины первого месяца после ядерного конфликта совпали. Учеными разрабатывались также биосферные модели. Первый этап в создании биосферной модели завершившийся ее проверкой на тестовых испытаниях, был завершен в 1982. Эта система была названа «ГЕЯ» В этой системе не учитывался блок человека, который бы описывал человеческую деятельность. Эта модель оказалась в своих основных чертах оказалась адекватна реальности и могла быть использована для «экспериментального» изучения свойств биосферы. Однако ГЕЯ оказалась практически некорректна, т.к. в динамике биосферы существует «хаос по существу». В 1997 г. вышел очередной доклад Римского клуба «Фактор четыре. Затрат — половина, отдача — двойная», который подготовили Вайцзеккер Э., Ловинс Э., Ловинс Л. Целью этой работы стало решить вопросы, поставленные в предыдущих работах Римского клуба и прежде всего в первом докладе «Пределы роста». Основная идея этого доклада вызвала небывалый интерес во всем мире. Ее суть состоит в том, что современная цивилизация достигла уровня развития, на котором рост производства фактически во всех отраслях хозяйства способен осуществляться в условиях прогрессирующей экономики без привлечения дополнительных ресурсов и энергии. Человечество «может жить в два раза богаче, расходуя лишь половину ресурсов» (Вайцзеккер Э., Ловинс Э., Ловинс Л. Фактор четыре. Затрат — половина, отдача — двойная. М., Academia, 2000. с. 18.).

Классификация экосистем:1) микроэкосистемы (подушка лишайника, капля воды из озера, капля крови с клетками и т. д., рис. 53);2) мезоэкосистемы (пруд, озеро, степь и др.); 3) макроэкосистемы (континент, океан);4) глобальная экосистема (биосфера Земли), или экосфера, – интеграция всех экосистем мира.Таким образом, природные экосистемы – это открытые системы: они должны получать и отдавать вещества и энергию.Запасы веществ, усвояемые организмами, и прежде всего продуцентами, в природе небезграничны. Если бы эти вещества не были бы вовлечены в вечный круговорот, то жизнь на Земле была бы вообще невозможна. Такой «бесконечный» круговорот биогенных компонентов возможен лишь при наличии функционально различных групп организмов, способных осуществлять и поддерживать поток веществ, извлекаемых ими из окружающей среды.Различают ряд основных биомов суши; названия большинства из них определяются типом растительности, например хвойные или лиственные леса, пустыня, тропический лес и т.д. Однако в конечном счете фактором, определяющим тип биома, является климат, поскольку характер среды задается в основном температурой, количеством осадков, а также направлением и силой ветров. Так, например, и в северном и в южном полушарии в областях, лежащих в экваториальном поясе, ветры в основном дуют в направлении к экватору. Они несут с собой влагу, которая выпадает в виде обильных дождей в тропическом поясе; в результате возникают тропические леса. Однако и к северу и к югу от тропиков те же самые ветры являются причиной образования саванн и пустынь. Еще дальше от экватора чередующиеся ветры из субтропической и полярных зон создают сложную последовательность выпадения осадков в разных районах, что приводит к образованию степей и лесов умеренно го пояса. Близость к океану влияет на распределение осадков, а следовательно, и на распространение типов растительности. Неарктическая областьНеарктическая область включает территорию всей Северной Америки, Ньюфаундленд и Гренландию. На севере снега и льды сменяются тундрой, а затем широким поясом хвойных лесов. Южнее следует массив лесов умеренного пояса на востоке, прерии в центральной части и смешение гор, пустынь и хвойных лесов - на западе. Основные биомы следующие.Тундра. Низкорослая растительность: мхи, лишайники, f осока, чахлые кустарники. Основные животные: олень, мускусный бык, леминг, полярный заяц, песец, волк, белый полярный медведь, белая сова.Хвойные леса. В основном густые леса из пихты, ели и других хвойных деревьев. Основные животные: лось, олень, дикобраз, полевка, землеройки, росомаха, рысь, дятлы, американские рябчики.Степи. Различное сочетание травяной и кустарниковой растительности. Основные животные: бизон, антилопа, дикий кролик, американский барсук, лисица, койот, степной тетерев, большое количество гремучих змей.Лиственные леса. Широколиственные леса, имеющие плотную крону: дуб, бук, клен; множество цветов. Основные животные: крот, суслик, черная белка, енот-полоскун, опоссум, бурундук, красная американская лисица, черный медведь, певчие птицы. Жестколистные леса. Заросли можжевельника и кустарников с кожистыми листьями. Представители фауны попадают из соседних биомов.Пустыни. Из растений широко распространены кактусы, древовидная юкка, полынь и кустарники. Основные животные: дикий кролик, суслик, кактусовая мышь, карманчиковая мышь, кенгуровая крыса и другие. Гомеостаз — способность биологических систем — организма, популяции и экосистем — противостоять изменениям и сохранять равновесие. Исходя из кибернетической природы экосистем — гомеостатический механизм — это обратная связь. Например, у пойкилотермных животных изменение температуры тела регулируется специальным центром в мозге, куда постоянно поступает сигнал обратной связи, содержащий данные об отклонении от нормы, а от центра поступает сигнал, возвращающий температуру к норме. В механических системах аналогичный механизм называют сервомеханизмом, например, термостат управляет печью. Для управления экосистемами не требуется регуляция извне — это саморегулирующаяся система. Саморегулирующий гомеостаз на экосистемном уровне обеспечен множеством управляющих механизмов. Один из них — субсистема «хищник—жертва». Между условно выделенными кибернетическими блоками управление осуществляется посредством положительных и отрицательных связей. Положительная обратная связь «усиливает отклонение», например увеличиваетУстойчивость и сбалансированность процессов, протекающих в экосистемах, позволяет констатировать, что им в целом свойственно состояние гомеостаза, подобно входящим в их состав популяциям и каждому живому организму. Нестабильность среды обитания в экосистемах компенсируется биоценотическими адаптивными механизмами. При незначительных нарушениях условий в экосистеме на фоне неизменных средних характеристик среды принципиальная структура биоценоза сохраняется за счет функциональной адаптации. При более существенном нарушении состава биоценоза возникают неустойчивые, сменяющие друг друга сообщества. Этот процесс в идеальном случае ведет к восстановлению исходного типа экосистемы. Экологические сукцессии — одно из наиболее ярких выражений механизма поддержания гомеостаза на уровне экосистемы. В естественной экосистеме постоянно поддерживается равновесие, исключающее необратимое уничтожение тех или иных звеньев трофической сети. Это является следствием длительного эволюционного процесса, названного Ч. Дарвиным естественным отбором. Любая экосистема всегда сбалансирована и устойчива (гомеостатична), причем системы тем стабильнее во времени и пространстве, чем они сложнее. Человек постоянно вмешивается в процессы, происходящие в экосистемах, влияя на них в целом и на отдельные звенья, создавая антропогенные помехи. Он все сильнее нарушает природные механизмы контроля или пытается заменять естественные механизмы на искусственные.

Вода как среда обитания. Адаптации организмов к ней. Водная среда, или гидросфера была первой из сред жизни, освоенной организмами. Это самая обширная среда обитания, занимающая 71% площади нашей планеты.Вода как среда обитания имеет ряд специфических свойств, таких, как большая плотность, сильные перепады давления, относительно малое содержание кислорода, сильное поглощение солнечных лучей и др. Водоемы и отдельные их участки различаются, кроме того, солевым режимом, скоростью горизонтальных перемещений (течений), содержанием взвешенных частиц. Для жизни придонных организмов имеют значение свойства грунта, режим разложения органических остатков и т. п. Поэтому наряду с адаптациями к общим свойствам водной среды ее обитатели должны быть приспособлены и к разнообразным частным условиям. Обитатели водной среды получили в экологии общее название гидробионтов. Они населяют Мировой океан, континентальные водоемы и подземные воды.Особенности гидросферы как среды обитания водных организмов, называемых гидробионтами, можно понять, лишь ознакомившись с физическими свойствами воды по сравнению с воздухом. К числу главнейших свойств воды относится плотность, которая примерно в 1220 раз превышает плотность воздуха. Следствием этого является наличие большого сопротивления движению гидробионтов, увеличение давления на них воды с возрастанием глубины, большая опорность, используемая водными организмами, а также высокие выталкивающая сила (архимедова сила) и вязкость.Плотность воды зависит от температуры. Максимальная плотность, равная 1 г/мл, наблюдается при +4 °С. При повышении или понижении температуры плотность воды уменьшается. При замерзании вода расширяется, увеличивая свой объем примерно на 11%. Благодаря этому свойству лед располагается на поверхности водоема, а более плотная вода с положительными температурами находится подо льдом. Самая плотная вода находится в придонной области, давая возможность для жизни донным организмам в зимнее время. Вертикальное распределение температуры в водоеме в разные сезоны года.У воды одна из самых высоких величин удельной теплоемкости. Чтобы изменить температуру 1 г. воды на 1 °С, нужно затратить 4,19 Дж тепла (в 500 раз больше, чем у воздуха). Поэтому вода, медленно нагреваясь и медленно остывая, уменьшает амплитуду суточных и сезонных колебаний температуры, стабилизируя ее.У воды высокая теплопроводность (в 30 раз выше, чем у воздуха), благодаря чему осуществляется равномерное распределение температуры в водной среде.Вода превосходный растворитель разнообразных минеральных веществ. В зависимости от количества растворенных солей выделяют пресные (до 0,5 г/л), солоноватые (0,5—16 г/л), морские (16—47 г/л) и пересоленные (47—350 г/л) воды. Природным водам свойствен определенный состав минеральных солей. Так, в пресных водах преобладают карбонаты, в морских — хлориды. С повышением солености воды возрастает ее плотность и понижается температура замерзания.В воде растворяются и газы. Однако кислорода в воде содержится в 30 раз меньше, чем при той же температуре в равном объеме воздуха. При интенсивном развитии гидробионтов в ночное время, когда нет обогащения воды за счет фотосинтеза водных растений, может возникнуть дефицит кислорода. Нередко это приводит к гибели водных организмов (например, заморы рыб). Поэтому кислород в водной среде — лимитирующий фактор.Второй лимитирующий фактор — свет. Освещенность быстро снижается с увеличением глубины. Идеально чистые воды имеют прозрачность 40–60 м, а силно загрязненные — не более 10 см (величину прозрачности определяют путем погружения белого диска в воду до предельной глубин его видимости). Поэтому наибольшее количество света получает поверхностный слой воды, в котором интенсивно осуществляется фотосинтез.Адаптации живых организме к водной среде. Главнейшими адаптациями водных организмов к жизни в водной среде являются следующие. Из-за низкого содержания кислорода в водной среде отсутствуют гидробионты с высоким уровнем процессов жизнедеятельности. Типичными ее обитателями являются организмы с непостоянной температурой тела, относящиеся к группе эктотермных организмов. В периоды недостатка кислорода они способны снижать интенсивность процессов жизнедеятельности, многие из них — вплоть до состояния анабиоза. Высокоорганизованные теплокровные (животные с высоким уровнем процессов жизнедеятельности — киты, дельфины, тюлени, морские котики и др.) живут в водной среде только благодаря дыханию атмосферным воздухом, который они вдыхают, периодически подымаясь из глубин к поверхности воды.Адаптация гидробионтов к высокой плотности воды происходила по двум направлениям. Одни из них, в основном микроскопически мелкие, используют ее как опору и находятся в состоянии свободного парения благодаря приспособлениям, снижающим удельную массу тела (отсутствие утяжеляющего скелета, наличие капелек жира или воздуха и др.) либо увеличивающим трение поверхности тела о воду (мелкие размеры тела, выросты покровов тела). Эти гидробионты образовали экологическую группировку, названную планктоном (от греч. planktos — парящий, блуждающий). Выделяют растительный планктон (фитопланктон) и животный фитопланктон (зоопланктон). Для всех планктонных организмов характерно отсутствие способности противостоять течению воды.Организмы другой экологической группировки гидробионтов, названной нектоном (от греч. nektos — плавающий), напротив, активно плавающие животные, способные преодолевать силу течения. Самыми типичными представителями этой группы являются рыбы и головоногие моллюски. Для них характерна обтекаемая форма тела, развитая мускулатура, позволяющая быстро передвигаться в водной среде.Планктонные и нектонные организмы освоили толщу воды водоемов. Донную же область заселили организмы бентоса (от греч. bentos — глубина). Многие из них имеют тяжелые известковые раковины (моллюски), мощную хитинизированную кутикулу (речной рак, крабы, омары, лангусты), органы прикрепления к грунту (присоски у пиявок, крючья у личинок ручейников, ризоиды и корни у растений).

Почва как среда обитания. Адаптации организмов к ней. Почва представляет собой сложную систему, состоящую из твердых частиц, окруженных воздухом и водой. В зависимости от типа — глинистая, песчаная, глинисто-песчаная и др. — почва в большей или меньшей степени пронизана полостями, заполненными смесью газов и водными растворами. В почве, по сравнению с приземным слоем воздуха, сглажены температурные колебания, а на глубине 1 м не ощутимы и сезонные изменения температуры.Самый верхний горизонт почвы содержит большее или меньшее количество перегноя, от которого зависит продуктивность растений. Расположенный под ним средний слой содержит вымытые из верхнего слоя и преобразованные вещества. Нижний слой представлен материнской породой.Вода в почве присутствует в пустотах, мельчайших пространствах. В почвенном воздухе присутствует также и парообразная вода.Состав почвенного воздуха резко меняется с глубиной: содержание кислорода уменьшается, а углекислого газа возрастает. При затоплении почвы водой или интенсивном гниении органических остатков возникают бескислородные зоны.Таким образом, условия существования в почве различны на разных ее горизонтах.Почва как среда жизни чрезвычайно благоприятна для обитания многочисленных организмов. Ей свойственны более или менее рыхлая структура, определенная водопроницаемость и аэрируемость. В почве концентрируются запасы органических и минеральных веществ, поставляемых растительностью и трупами животных. Количество организмов в почве огромно, однако в связи со сглаженностью экологических условий все они отличаются «выравненностью группового состава». Кроме того, для них характерна повторяемость в различных климатических зонах.Почвенные организмы по степени связи со средой обитания разделяются на три основные группы.Геобионты — постоянные обитатели почвы, весь цикл их развития протекает в почве (дождевые черви, многие первично-бескрылые насекомые).Геофилы — животные, часть цикла развития которых проходит в почве. К ним относится большинство насекомых: саранчовые, ряд жуков, комары-долгоножки. Личинки их развиваются в почве, а во взрослом состоянии это типичные наземные обитатели.Геоксены — животные, иногда посещающие почву для временного укрытия или убежища (таракановые, многие полужесткокрылые, грызуны, млекопитающие, живущие в норах).

Многие животные почвенной среды, чаще всего это беспозвоночные (медведки, личинки майского жука), имеют мощный грызущий ротовой аппарат, так как питаются корнями растений. Тело их сегментировано, чтобы обеспечить продвижение в почвенной среде (вспомните, как передвигается дождевой червь). У членистоногих, как, например, у медведки, покров тела хитиновый, голова имеет мощную хитиновую капсулу, передние конечности часто копательного типа. Почвенные насекомые обладают способностью к вертикальной миграции: с понижением температуры почвы они уходят на значительную глубину — ниже границы замерзания. Немногочисленные почвенные млекопитающие имеют слабое зрение, но зато у них сильно развиты обоняние и осязание.Адаптации организмов к жизни в почве. Мелкие почвенные членистоногие (клещи, насекомые, многоножки) используют для передвижения по стенкам почвенных полостей коготки на лапках. Многие из них имеют несмачиваемые покровы тела, снабженные волосками, чешуйками, которые позволяют переживать периоды затопления почвы в пузырьках воздуха.Более крупные почвенные животные, такие как личинки майского жука, дождевые черви, при передвижении испытывают сильное сопротивление со стороны почвы. Для раздвигания почвенных частиц у них выработалось приспособление в виде гидроскелета (дождевые черви) либо способность к изгибанию тела (круглые черви).Некоторые средние по размерам (медведки) и крупные почвенные животные (кроты, слепыши) выработали эффективный способ передвижения в почве — рытье. Внешнее строение землероев разных таксономических групп характеризуется сходными признаками: компактным телом, копательными конечностями, слаборазвитыми органами зрения и др., что отражает их приспособленность к подземному образу жизни

Наземно воздушная среда жизни

Общая характеристика. В ходе эволюции наземно-воздушная среда была освоена значительно позднее, чем водная. Жизнь на суше потребовала таких приспособлений, которые стали возможными только при сравнительно высоком уровне организации как растений, так и животных. Особенностью наземно-воздушной среды жизни является то, что организмы, которые здесь обитают, окружены воздухом и газообразной средой, характеризующейся низкими влажностью, плотностью и давлением, высоким содержанием кислорода. Как правило, животные в этой среде передвигаются по почве (твердый субстрат), а растения укореняются в ней. В наземно-воздушной среде действующие экологические факторы имеют ряд характерных особенностей: более высокая интенсивность света в сравнении с другими средами, значительные колебания температуры, изменение влажности в зависимости от географического положения, сезона и времени суток (табл. 5.3). Условия обитания организмов воздушной и водной среды

Условия обитания Значение условий для организмов воздушной среды водной среды

Влажность Очень важное (часто в дефиците) Не имеет (всегда в избытке)

Плотность среды Незначительное (за исключением почвы) Большое по сравнению с ее ролью для обитателей воздушной среды

Давление Почти не имеет

Большое (может достигать 1000 атмосфер)

Температура Существенное (колеблется в очень больших пределах (от -80 до +100 °С и более) Меньшее по сравнению со значением для обитателей воздушной среды (колеблется гораздо меньше, обычно от -2 до +40°С)

Кислород Несущественное (большей частью в избытке) Существенное (часто в дефиците)

Взвешенные вещества Неважное; не используются в пищу (главным образом минеральные) Важное (источник пищи, особенно органические вещества)

Растворенные вещества в окружающей среде В некоторой степени (имеют значение только в почвенных растворах)

Важное (в определенном количестве необходимы) Воздействие вышеуказанных факторов неразрывно связано с движением воздушных масс — ветра. В процессе эволюции у живых организмов наземно-воздушной среды выработались характерные анатомо-морфологичес-кие, физиологические, поведенческие и другие адаптации. Например, появились органы, которые обеспечивают непосредственное усвоение атмосферного кислорода в процессе дыхания (легкие и трахеи животных, устьица растений). Получили сильное развитие скелетные образования (скелет животных, механические и опорные ткани растений), которые поддерживают тело в условиях незначительной плотности среды. Выработались приспособления для защиты от неблагоприятных факторов, таких, как периодичность и ритмика жизненных циклов, сложное строение покровов, механизмы терморегуляции и др. Сформировалась тесная связь с почвой (конечности животных, корни растений), выработалась подвижность животных в поисках пищи, появились переносимые воздушными течениями семена, плоды и пыльца растений, летающие животные.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]