Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Т1 раздел 3.doc
Скачиваний:
92
Добавлен:
15.12.2018
Размер:
5.08 Mб
Скачать

27.3. Некоторые современные разновидности вольтамперометрии

Нижняя граница определяемых концентраций в классической полярографии составляет 10-5 М. Её значение обусловлено величиной отношения фарадеевского тока, связанного с протеканием электродной реакции с участием определяемого вещества, к ёмкостному току (одному из компонентов остаточного тока). При увеличении отношения IF/IC нижняя граница определяемых концентраций также уменьшается.

Краткая характеристика некоторых современных вольтамперометрических методов анализа приведена в табл. 27.1.

Табл. 27.1.

Некоторые современные разновидности вольтамперометрии

Метод

Принцип метода и вид вольтамперограммы

дифференциальная

импульсная вольтамперометрия

На линейно изменяющееся (5 мВ/с) постоянное напряжение через одинаковые промежутки времени подают одинаковые дополнительные импульсы. Силу тока измеряют до подачи импульса и в его конце. Вольтамперограмма имеет вид первой производной вольтамперометрической волны.

вольтамперометрия с быстрой развёрткой потенциала (хроноамперометрия)

Используется линейно изменяющееся напряжение, но скорость его изменения очень высокая (> 100 мВ/сек). Измерение силы тока проводится в течение нескольких последних секунд жизни капли. Вольтамперограмма регистрируется с помощью осциллографа или электронного дисплея.

Инверсионная вольтамперометрия (обычно анодная)

Вначале в течение строго определённого времени проводят электролиз анализируемого раствора. Некоторое количество определяемого вещества при этом восстанавливается и накапливается в (на) электроде. После окончания электролиза выключают мешалку и дают раствору успокоиться. Затем потенциал линейно уменьшают и регистрируют зависимость анодного тока от Е.

27.4. Практическое применение вольтамперометрии. Амперометрическое титрование

Вольтамперометрия используется для обнаружения, идентификации и количественного определения различных неорганических и органических веществ.

Поскольку ртутный капающий электрод может быть использован только в области отрицательных потенциалов, в основе полярографических определений обычно лежат реакции восстановления. Методом классической полярографии можно определять:

Верхняя граница области рабочих потенциалов платинового и графитового электродов составляет +1,4-1,6 В. В основе вольтамперометрических определений с данными электродами обычно лежат процессы окисления. Так определяют, например, аскорбиновую кислоту (E1/2 = 0,8 В, 1 М H2SO4), ЭДТА (0,7 В, 1 М HCl) и т.д.

Инверсионная вольтамперометрия имеет самый низкий предел определения среди всех электрохимических методов анализа и применяется для определения очень малых количеств ионов токсичных металлов в биологических матрицах, а также в природных объектах.

Титриметрический метод анализа, в котором обнаружение конечной точки проводится вольтамперометрически, называется амперометрическим титрованием.

При проведении амперометрического титрования регистрируют изменение силы тока при добавлении к раствору очередной порции титранта. В качестве индикаторного электрода используется вращающийся платиновый или, реже, ртутный капающий электрод. Измерения проводят при величине потенциала, соответствующей достижению предельного тока для соответствующего электроактивного вещества. В амперометрическом титровании могут быть использованы различные окислительно-восстановительные реакции, а также реакции комплексообразования и осаждения. Примеры кривых титрования показаны на рис. 27.6.

Рис. 27.6. Различные варианты амперометрического титрования

1 – электроактивно определяемое вещество, 2 – электроактивен титрант,

3 – электроактивны и определяемое вещество и титрант

Известен вид амперометрического титрования, в котором используются два идентичных индикаторных электрода. Если в растворе присутствуют окисленная и восстановленная формы сопряжённой окислительно-восстановительной пары, то окисленная форма восстанавливается на одном из электродов, а восстановленная окисляется на другом. В цепи при этом протекает электрический ток. Если в растворе присутствует только окисленная или только восстановленная форма, ток в цепи протекать не будет. Амперометрическое обнаружение конечной точки титрования с двумя индикаторными электродами может быть использовано, например, при определении воды методом Карла Фишера. Для этого применяют электрическую цепь, состоящую из микроамперметра, двух платиновых электродов и батареи, соединённых через переменное сопротивление. После каждого прибавления реактива Карла Фишера к титруемому раствору стрелка микроамперметра вначале отклоняется, но затем быстро возвращается в исходное состояние. В конечной точке титрования стрелка остаётся в отклонённом состоянии 10-15 секунд.

411