Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Т1 раздел 3.doc
Скачиваний:
92
Добавлен:
15.12.2018
Размер:
5.08 Mб
Скачать

20.5.4. Практическое применение

ИК-спектроскопия используется преимущественно для установления строения и идентификации органических (реже неорганических) соединений, в том числе и лекарственных веществ. В плане качественного анализа ИК-спектры являются значительно более информативными, чем спектры поглощения в УФ- или видимой области. Большинство функциональных групп (OH-, NH2 и т.п.) не обладают собственным поглощением в УФ- и видимой области. Напротив, в ИК-спектрах они имеют собственные полосы поглощения. Кроме того, в УФ-спектре отдельные полосы поглощения часто сливаются друг с другом, что затрудняет его интерпретацию.

Обнаружение и идентификация веществ методом ИК-спектроскопии может проводиться следующим образом:

  • обнаружение отдельных функциональных групп по характеристическим полосам поглощения,

  • сравнение ИК-спектров исследуемого соединения и стандартного образца,

  • идентификация неизвестного соединения с помощью атласа или компьютерной библиотеки ИК-спектров.

В количественном анализе ИК-спектроскопия используется значительно реже, чем спектроскопия в УФ- и видимой области. Это связано с тем, что чувствительность данного метода анализа существенно ниже (величины  обычно составляют 1-1103), а воспроизводимость хуже. Количественный анализ, как и в других абсорбционных спектроскопических методах, основан на законе Бугера-Ламберта-Бера. Концентрацию вещества определяют методом градуировочного графика.

Глава 21

21.1. Атомно-эмиссионная спектроскопия

Атомно-эмиссионная спектроскопия (АЭС) - спектроскопический метод анализа, основанный на измерении электромагнитного излучения оптического диапазона, испускаемого термически возбуждёнными свободными атомами или одноатомными ионами.

21.1.1. Процессы, приводящие к появлению аналитического сигнала

При действии на атом тепловой энергии один из электронов переходит на более высокий энергетический уровень, а затем (через ~ 10-8 с), возвращаясь в основное состояние, испускает поглощённую энергию в виде кванта электромагнитного излучения определённой длины волны либо отдаёт её в виде теплоты при столкновении с другими атомами (рис. 21.1).

Рис. 21.1. Схема процессов, лежащих в основе АЭС

Атомный спектр испускания, также как и спектр поглощения, состоит из множества отдельных линий различной интенсивности, соответствующих различным возможным электронным переходам. Наиболее вероятными являются испускательные переходы с ближайшего к основному электронного уровня. Такие переходы называются резонансными. Соответствующие им линии в спектре имеют самую большую интенсивность и чаще всего используются для практических целей.

21.1.2. Измерение аналитического сигнала

Приборы, используемые в атомно-эмиссионной спектроскопии, имеют следующие основные узлы (рис. 21.2).

Рис. 21.2. Принципиальная схема прибора для АЭС

Роль атомизатора заключается не только в получении свободных атомов, но и в переводе атомов в возбуждённое состояние. Вследствие этого атомизация в АЭС проводится в более жёстких условиях, чем в ААС. В качестве атомизаторов используют:

В качестве устройства для выделения необходимого спектрального интервала из получаемого спектра испускания используют монохроматоры: дифракционные решётки или призмы. В пламенной фотометрии получаемые спектры содержат мало линий, поэтому для выделения требуемого спектрального интервала используют светофильтры.