Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Многомерное шкалирование в психологии.doc
Скачиваний:
11
Добавлен:
24.11.2018
Размер:
227.33 Кб
Скачать

Основные подходы к шкалированию

Известны три подхода к шкалированию: линейный, нелинейный и неметрический. Линейный подход, предложенный Торгерсоном [9], основан на ортогональном проектировании в подпространство, образованное направлениями, характеризующимися значительным разбросом точек. Такое решение дает при ортогональном проектировании.

В нелинейном случае [1, 7, 11] пытаются найти отображение D -> d, которое бы минимально искажало исходные различия Djk. Вводится критерий качества отображения, называемый «стрессом» и измеряющий степень расхождения между исходными различиями Djk и результирующими расстояниями djk. С помощью аппарата нелинейной оптимизации ищется конфигурация точек, которая давала бы минимальное значение «стрессу». Значения координат этих точек и являются решением задачи. В качестве «стресса» используются разные виды функционалов, в простейшем случае

Нелинейный подход, как правило, приводит к пространству меньшей размерности, чем линейный. В линейном случае допускаются искажения лишь в сторону уменьшения различий. В нелинейном — возможны искажения как в ту, так и в другую сторону. Предпосылки получения отображения в пространстве невысокой размерности можно создать, если допустить возможность некоторого увеличения больших расстояний и уменьшения маленьких.

Неметрический (или монотонный) подход в своей последней модификации [4, 6] основан на следующем соображении. Поскольку исходная матрица различий не является точной матрицей расстояний в каком-либо метрическом пространстве, то не следует стремиться аппроксимировать непосредственно эти различия. Нужно подобрать такую последовательность чисел, которая была бы монотонна с исходными различиями, но была бы более близка к точным расстояниям. Эту последовательность чисел уже можно использовать в качестве эталонной. Однако не известен способ построения такой последовательности с учетом лишь первоначальных различий. Предлагается многоэтапная процедура, использующая начальную конфигурацию точек. На первом этапе подбирается числовая последовательность , монотонная с исходными различиями и минимально отклоняющаяся от расстояний начальной конфигурации. Затем ищется новая конфигурация, расстояния которой в наилучшей мере аппроксимируют числовую последовательность . На втором этапе опять подбирают новую последовательность и конфигурацию изменяют так, чтобы ее расстояния приближали эту последовательность, и т. д. Таким образом, в качестве критерия, измеряющего качество отображения, используется функционал вида

Нормирующий множитель вводится для того, чтобы на качество решения не влиял масштаб конфигурации.

Известен еще один подход к шкалированию [5], сохраняющий монотонность отображения и не опирающийся на какую-либо числовую последовательность. Он основан на минимизации критерия

Где

Передвижение точек конфигурации направлено на усиление монотонности отображения, т. е. удовлетворение требования dij < dkl, если Dij < Dkl.

Нелинейный и неметрический подходы имеют преимущество перед линейным. Не ограничиваясь ортогональным проектированием, они позволяют получить хорошее отображение в пространстве меньшего числа измерений. Если размерность пространства оценена правильно, то после вращения координатные оси могут быть интерпретированы как факторы, лежащие в основе субъективных различий между стимулами. Если же размерность недооценена, то решение допускает интерпретацию только в терминах кластеров.

Нелинейные и неметрические методы опираются, как правило, на дистанционную модель: различия между стимулами приближаются расстояниями между соответствующими им точками. Для поиска решения они используют градиентные процедуры минимизации функционала. В большинстве случаев расстояния между точками вычисляются по евклидовой метрике, которая не чувствительна к вращению осей и переносу начала координат. Качество решения не зависит от направления системы координат, по этой причине формально полученные оси не могут нести смысловую нагрузку — для содержательной интерпретации они должны быть ориентированы соответствующим образом.

В основу линейного метода Торгерсона положена центрированная векторная модель: близости между стимулами должны быть аппроксимированы скалярными произведениями векторов, соединяющих точки-стимулы с центром тяжести структуры. Решение ищется путем факторизации матрицы исходных близостей (или связей); вычисляются ее собственные значения и собственные векторы. Такая процедура обусловливает жесткую ориентацию осей: первая ось характеризуется максимальным разбросом точек вдоль нее, вторая — ортогональна первой и определяется следующим по величине разбросом, третья — ортогональна плоскости первых двух и т. д. В тех практических ситуациях, когда существует фактор, по которому стимулы различаются больше, чем по всем остальным, первая ось будет соответствовать этому фактору. В таком случае формально полученные оси будут иметь смысловое содержание. Если же с точки зрения вклада в различия между стимулами все факторы или несколько из них равноценны, то для интерпретируемости осей необходимо произвести их поворот.

[редактировать]