Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Vlasov_-_konspekt_lektsy_-_new.doc
Скачиваний:
307
Добавлен:
19.11.2018
Размер:
6.37 Mб
Скачать

2.3.3 Получение окатышей безобжиговым путем

Основные эксплуатационные и капитальные затраты на производство окатышей связаны со стадией обжига, поэтому в различных странах ведут поиски метода упрочнения окатышей без их высокотемпературной обработки. В настоящее время опробованы два варианта безобжигового получения окатышей.

Автоклавный метод

В черной металлургии этот метод опробован в Воронежском государственном университете. Упрочнение происходит в результате образования связки цементационного типа, представляющей собой гель, состоящий из оксидов кальция, магния, кремния и частично железа. Связка образуется при взаимодействии извести, добавляемой к концентрату, с кремнеземом. Преобладающими минералами связки являются гидросиликаты кальция. Взаимодействие извести с кремнеземом происходит в результате 2—5 ч выдержки в автоклаве при 180—200 °С и давлении пара 1 — 1,5МПа. Необходимы тщательное перемешивание шихты, а также перевод извести в шихте непосредственно перед окомкованием в гидрооксид кальция (во избежание разрушения окатышей при паротепловой обработке). Для этого целесообразно силосование шихты в течение нескольких часов. Применение автоклавированных окатышей, видимо, более перспективно в сталеплавильном и ферросплавном производстве, так как окатыши обладают невысокой прочностью при восстановлении. Недостатками метода являются также невысокая производительность и периодичность процесса.

Производство окатышей на цементной связке

В качестве связки используют портландцементный клинкер. Упрочнение окатышей происходит в результате реакций гидратации основных клинкерных минералов — алита (Ca3Si05), пятикальциевого триалюмината (СаА1вО14), четырехкальциевого алюмо-феррита (Ca4Fe2Al2Ol0) и др., в результате которых в окатышах образуется связка сложного состава, подобная получаемой при автоклавной обработке.

Основным недостатком способа является большая суммарная продолжительность процесса упрочнения (21—28 сут). Нормальному течению процесса препятствует также слипание окатышей, что требует создания «буферного» слоя концентрата и усложнения схемы. Перспективы получения окатышей безобжиговым путем до настоящего времени не являются ясными ввиду отсутствия надежных промышленных технико-экономических данных их производства и проплавки.

2.3.4 Металлургические свойства окатышей

Прочность окатышей

Обожженные окатыши должны сохранять свою прочность от момента схода с обжиговой машины до загрузки в доменную печь.

Для окатышей важна не только нагрузка, при которой происходит их разрушение, но и крупность

получаемых кусков. В частности, в доменную печь нежелательно загружать куски <3—5 мм.

Прочность окатышей обычно оценивается двумя показателями: прочностью при испытании на раздавливание (Н/окатыш) и выходом мелкой фракции (0,5—0,6 мм) после испытания на истирание в барабане (гладком или с двумя—тремя полками). Первое испытание дает большой разброс значений (среднеквадратичное отклонение равно половине средней величины), поэтому для испытания следует отбирать не менее 40—50 образцов.

На прочностные свойства окатышей влияет ряд технологических факторов. Из них основным является температура обжига, которая в значительной степени интенсифицирует процесс спекания, благоприятно влияя на свойства расплава, образующегося при обжиге. Температурная зависимость прочности имеет экстремальный характер. При превышении температурного оптимума (не одинакового для различных окатышей) наблюдается некоторое снижение прочности. Причинами этого явления считают диссоциацию гематита с образованием неоднородной структуры окатышей, а также образование чрезмерного количества расплава.

Определенную роль в упрочнении играет и время пребывания окатышей при температуре обжига. Наиболее интенсивно упрочнение протекает в первые 5—20 мин. Затем этот процесс замедляется и возможно даже некоторое снижение прочности окатышей, что объясняется рекристаллизацией зерен оксидов железа, приводящей к уменьшению протяженности межзеренных границ.

На прочность окатышей влияет ход процесса окисления оксидов железа. Установлено, что при окислении оксидов железа скорость уплотнения магнетита снижается, свидетельствуя об уменьшении скорости спекания и упрочнения образцов. Таким образом, целесообразно разделить процессы окисления и спекания, проводя низкотемпературное окисление (при 900—1000 °С). Для этого необходимо поддерживать небольшой скорость подогрева окатышей (80—120 °С/мин).

Воздействие на прочностные свойства окатышей оказывает и скорость охлаждения. При высоких скоростях охлаждения (более 100—150 сС/мин) прочность окатышей снижается, что обусловлено развитием термических напряжений.

На прочность окатышей влияют количество и состав пустой породы, от которых зависят количество и свойства расплава, образующегося при обжиге окатышей. Влияние количества пустой породы на прочность неофлюсованных окатышей экстремальное, т. е. степень офлюсования окатышей должна значительнее влиять на прочность окатышей при малом количестве пустой породы, т. е. при обжиге окатышей из богатых железорудных концентратов. Таким образом, при выборе режима обжига следует иметь в виду взаимосвязь трех переменных: прочности окатышей, содержания железа в исходном концентрате и основности шихты.

На прочность окатышей влияет также размер частиц компонентов шихты: чем мельче частицы, тем быстрее спекаются зерна.

Прочность окатышей при восстановлении

При восстановлении прочность железорудных окатышей существенно снижается. Например, в доменных печах ММК проплавляли офлюсованные окатыши ССГОКа средней исходной прочностью 2 кН/окатыш. Прочность окатышей, извлеченных из верхней части шахты, составляла 470—850 Н/окатыш. На середине высоты шахты прочность снижается до 240—325 Н/окатыш. Резкое разупрочнение окатышей при восстановлении может привести к их разрушению в печи, образованию мелочи с уменьшением газопроницаемости столба шихты и увеличением выноса пыли из печи.

До настоящего времени нет единой методики определения прочности окатышей при их восстановлении. Наиболее простой метод сводится к определению раздавливающего усилия на восстановленный до определенной степени горячий или охлажденный окатыш и оценке выхода мелочи после разрушения.

Однако основным фактором, влияющим на поведение окатышей при восстановлении, является структура, определяющая скорость восстановления окатышей. Чем выше удельная поверхность и средний размер пор, тем более вероятно протекание восстановления во всем объеме окатыша и тем выше скорость восстановления, ниже прочность и выше разрушаемость окатышей.

Все мероприятия, обеспечивающие получение окатышей с более плотной структурой, приводят к росту горячей прочности окатышей. Наиболее эффективным является получение окатышей с некоторым количеством расплава. Следовательно, образование при обжиге жидкой фазы с нужными свойствами (низкая вязкость, хорошая смачиваемость и др.) благоприятно сказывается на холодной и горячей прочности окатышей.

Таким образом, требования к режиму обжига окатышей с точки зрения их прочности и восстановимости, как и в случае агломерации, не совпадают. Задачей технолога является определение для данных конкретных условий режима обжига, обеспечивающего получение высокопрочных окатышей при минимальном снижении их восстановимости.

Восстановимость

Восстановимость окатышей меняется в зависимости от их структуры и состава, что в свою очередь определяется режимом обжига. Наилучшей восстановимостью обладают окатыши, обожженные при 1000—1150 °С. В этих условиях упрочнение окатышей осуществляется исключительно по твердофазному механизму. Рудный минерал представлен в основном гематитом. Пористая неоплавленная структура окатыша с высокой удельной поверхностью пор определяет его высокую восстановимость. Однако прочность обожженных в этих условиях окатышей низкая, поэтому такой режим обжига на практике не осуществляют.

При обычной в производственных условиях температуре обжига (1200—1350 СС) на восстановимость окатышей основное влияние оказывает образование расплава, что сказывается на физической структуре гранул, а следовательно, и на восстановимости окатышей. Решающую роль на восстановимость окатышей оказывает удельная поверхность пор. Восстановимость окатышей определяется и их размером. При увеличении диаметра окатышей восстановимость их падает, причем особенно резко при диаметре более 16—18 мм.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]