Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сопромат. Пособие (ч.2).doc
Скачиваний:
85
Добавлен:
06.11.2018
Размер:
4.17 Mб
Скачать

4.3. Расчет статически неопределимых балок и рам

Рекомендуемая литература

Александров А. В., Потапов В. Д., Державин Б. П. Сопротивление материалов. М.: Высш. шк., 1995. Гл. 9 (§ 9.1–9.3).

Гастев В. А. Краткий курс сопротивления материалов. М.: Физматгиз, 1977. Гл. 9.

Дарков А. В., Шпиро Г. С. Сопротивление материалов. М.: Высш. шк., 1989. Гл. 12 (§ 12.1–12.6).

Основные определения

Статически неопределимые балки и рамы – конструкции, в которых уравнений статики недостаточно для определения опорных реакций и внутренних усилий. Число связей, наложенных на статически неопределимую систему, больше того количества связей, которые обеспечивают геометрическую неизменяемость конструкции. Такими связями могут быть как опорные связи, так и стержни самой конструкции. Будем рассматривать балки и простые рамы, то есть такие конструкции, в которых связями, обеспечивающими геометрическую неизменяемость, являются опорные закрепления (опорные связи). Для обеспечения геометрической неизменяемости балки (рамы) в плоскости достаточно трех связей. Каждая связь запрещает какое-то перемещение. Шарнирно-подвижная опора запрещает перемещение по направлению, перпендикулярному плоскости опирания, и является одной связью. Шарнирно-неподвижная опора делает невозможными линейные перемещения по двум взаимно-перпендикулярным направлениям (вертикальному и горизонтальному) и соответствует двум связям, наложенным на конструкцию. Наконец, при наличии жесткого защемления на конце стержня становятся невозможными все перемещения: и вертикальное, и горизонтальное, и угол поворота, поэтому жесткое защемление представляет собой три связи, обеспечивающие геометрическую неизменяемость балки (рамы). Каждая дополнительная связь сверх трех для плоских систем превращает конструкцию в статически неопределимую. Такие дополнительные связи, которые не являются необходимыми для обеспечения геометрической неизменяемости конструкции, называются лишними.

Рис. 4.32. К расчету статически неопределимой балки:

а – заданная статически неопределимая балка;

б – основная система и условие совместности деформаций (вариант 1);

в – основная система и условие совместности деформаций (вариант 2)

Перед расчетом статически неопределимой конструкции необходимо сначала определить степень статической неопределимости рассматриваемой системы. Для балок и простых рам степень статической неопределимости равна числу лишних опорных связей. В каждой связи возникает опорная реакция, поэтому степень статической неопределимости можно найти, сосчитав разность между количеством неизвестных опорных реакций и числом независимых уравнений статики. Например, балка на рис. 4.32, а является один раз статически неопределимой, так как имеет 4 связи и 4 неизвестные опорные реакции, а количество независимых уравнений равновесия – 3. В раме, показанной на рис. 4.34, а, число наложенных связей и опорных реакций в них равно 5, и эта рама является дважды статически неопределимой (в ней две лишние связи). Если в один из стержней балки (рамы) врезан шарнир, то количество связей уменьшается на единицу, так как становится возможным взаимный поворот сечений, примыкающих к шарниру. Появляется дополнительное уравнение для определения опорных реакций: "изгибающий момент в шарнире равен нулю" или можно сказать по-другому: "сумма моментов всех сил, расположенных слева (или справа) от шарнира, равна нулю". Так, балка с врезанным в точке Е шарниром, показанная на рис. 4.33, а, является один раз статически неопределимой: от 5 опорных связей надо вычесть одну связь, связанную с наличием дополнительного шарнира в точке Е. Из четырех оставшихся связей одна является лишней. Можно сосчитать степень статической неопределимости этой балки и иначе: для определения пяти опорных реакций можно составить четыре уравнения статики (дополнительное уравнение "изгибающий момент в шарнире Е равен нулю"). Разность между числом реакций и количеством уравнений статики равна единице, то есть балка один раз статически неопределима.

Рис. 4.33. К расчету статически неопределимой балки с шарниром:

а – заданная статически неопределимая балка;

б – основная система и условие совместности деформаций (вариант 1);

в – основная система и условие совместности деформаций (вариант 2)

Рис. 4.34. К расчету статически неопределимой рамы:

а – заданная статически неопределимая рама;

б – основная система и условия совместности деформаций (вариант 1);

в – основная система и условия совместности деформаций (вариант 2)

Рассмотрим один из способов расчета статически неопределимых балок и рам, а именно тот, который основан на том же принципе, что и расчет рассмотренных ранее статически неопределимых стержневых конструкций, работающих на растяжение-сжатие, кручение. Согласно этому способу для определения всех неизвестных к необходимым уравнениям равновесия добавляются уравнения совместности деформаций. При определении деформаций в уравнениях совместности деформаций используются физические уравнения (закон Гука). Из решения полученной системы уравнений можно найти все неизвестные реакции и определить внутренние усилия.

Для уменьшения в системе уравнений количества неизвестных, которые определяются в первую очередь, при расчете балок и рам чаще всего используют прием, связанный с выбором основной системы. Основная система – это статически определимая конструкция, полученная из заданной системы путем отбрасывания лишних связей. Реакции в отброшенных связях принято называть лишними неизвестными и обозначать Хi. Решение задачи (раскрытие статической неопределимости) сводится сначала к определению лишних неизвестных. Для их нахождения используются уравнения совместности деформаций – это условия кинематической эквивалентности основной и заданной систем, то есть равенства, приравнивающие нулю деформации по направлению отброшенных в основной системе связей. Количество уравнений совместности деформаций равно степени статической неопределимости. Зная величины лишних неизвестных, можно найти из уравнений равновесия остальные реакции. Обсудим подробно, как выбирать основную систему и записывать уравнения совместности деформаций.

На рис. 4.32, б, в – 4.34, б, в показаны по два варианта основных систем, выбранных для заданных систем, изображенных на рис. 4.32, а – 4.34, а. Балка на рис. 4.32, а один раз статически неопределима, для выбора основной системы необходимо отбросить одну связь. В первом варианте основной системы, изображенном на рис. 4.32, б, отброшена подвижная опора в точке В. Вертикальная реакция в отброшенной связи (лишняя неизвестная) обозначена буквой Х. Условие совместности деформаций для этого варианта основной системы: – это условие, приравнивающее нулю вертикальное перемещение (прогиб) в точке В балки, так как в заданной системе этот прогиб был невозможен. Во втором варианте на рис. 4.32, в жесткое защемление заменено шарнирно-неподвижной опорой. Лишней неизвестной является реактивный момент. Поскольку в точке А стал возможным поворот сечения, то условие совместности деформаций полагает этот угол поворота равным нулю: .

Для выбора основной системы в дважды статически неопределимой раме на рис. 4.34, а требуется отбросить две связи. На рис. 4.34, б, в лишние неизвестные обозначены Х1 и Х2. В основной системе, показанной на рис. 4.34, б, стали возможны по сравнению с заданной системой горизонтальное перемещение в точке В и вертикальное перемещение в точке С , поэтому эти перемещения необходимо приравнять нулю. Это и есть условия совместности деформаций для варианта основной системы, показанной на рис. 4.34, б:

. (4.26)

Аналогично для основной системы, изображенной на рис. 4.34, в, условия совместности деформаций следующие: .

Рис. 4.35. Взаимный угол поворота

сечений

около шарнира

Обсудим еще вариант 2 основной системы, показанный на рис. 4.33, в. В точке С сделан разрез стержня и между соседними сечениями вставлен шарнир. Лишней неизвестной в этом случае является изгибающий момент, возникающий в сечении С при отсутствии шарнира. Этот изгибающий момент изображен на рис. 4.33, в в виде двух одинаковых пар сил Х. Чтобы записать уравнение совместности деформаций, надо понять, чем отличается деформация заданной системы от деформации рассматриваемой основной системы. В заданной системе поворот соседних сечений, расположенных бесконечно близко слева и справа от точки С, возможен на один и тот же угол (сечения "склеены"). После разреза и добавления шарнира соседние сечения могут поворачиваться относительно друг друга на угол (рис. 4.35). Этот взаимный угол поворота соседних сечений в точке С мы и должны положить равным нулю при записи условия совместности деформаций: .

Для определения лишних неизвестных необходимо найти деформации в условиях совместности деформаций любым способом. Как правило, деформации находят методом Максвелла – Мора с использованием правила Верещагина. Удобно искать деформации отдельно от заданной нагрузки и от лишних неизвестных . Например, условия совместности деформаций (4.26) можно записать так:

; (4.27)

. (4.28)

Таким образом, для дважды статически неопределимой системы получаем систему уравнений из двух уравнений с двумя неизвестными, из которых и находим лишние неизвестные. После определения и находим остальные неизвестные реакции и строим окончательные эпюры внутренних усилий N, Q и М, используя уравнения статики.

Окончательную эпюру изгибающих моментов для один раз статически неопределимой системы можно проверить, перемножив ее с эпюрой моментов от единичной силы12. Результатом этого перемножения должен быть ноль, то есть

. (4.29)

Условие (4.29) – это условие совместности деформаций, подтверждающее равенство нулю деформаций по направлению лишней неизвестной.

Примеры решения задач

4.3.1. Расчет статически неопределимой балки

(задача № 23)

Условие задачи

Рис. 4.36. Заданная балка

Балка, показанная на рис. 4.36, с шарниром в точке Е загружена сосредоточенной парой М. Требуется определить внутренние усилия и построить изогнутую ось балки.

Решение

Рис. 4.37. Основная

система

Как было показано выше, заданная балка является один раз статически неопределимой. Выберем основную систему, отбросив одну лишнюю связь, например, подвижную опору в точке D (рис. 4.37). Опорную реакцию в точке D будем считать лишней неизвестной и обозначим буквой Х. Уравнением для определения лишней неизвестной является уравнение совместности деформаций. Для выбранной основной системы это условие, приравнивающее нулю прогиб балки в точке D: . Прогиб в точке D можно найти как сумму прогиба, вызванного заданной нагрузкой (парой сил М) и прогиба от лишней неизвестной Х, т. е. условие совместности деформаций можно записать так:

.

Будем искать прогиб методом Максвелла – Мора с использованием правила Верещагина. Сначала найдем . Для этого построим в основной системе эпюры изгибающего момента от заданной нагрузки (пары М в данной задаче) – ММ и изгибающего момента от единичной обобщенной силы, соответствующей искомому перемещению, – М1. Чтобы построить эпюру ММ, найдем опорные реакции. Горизонтальная реакция НА в балках при отсутствии горизонтальной составляющей нагрузки всегда равна нулю – это следует из уравнения равновесия "сумма проекций всех сил на горизонтальную ось равна нулю". Для определения трех других опорных реакций RA, RB и RC составим три уравнения равновесия:

; ; ;

; ; ;

; ; .

Рис. 4.38. Схемы балки и эпюры

изгибающих моментов:

а, б – от заданной нагрузки;

в, г– от единичной силы;

д, е– от лишней неизвестной

При составлении уравнений статики было принято, что все реакции действуют вверх, полученные знаки учтены в направлении реакций на рис. 4.38, а. Первое уравнение равновесия связано с наличием шарнира в точке Е балки и показывает, что изгибающий момент в шарнире равен нулю, то есть сумма моментов всех сил слева (или справа) от шарнира равна нулю. Эпюра изгибающих моментов ММ от заданной нагрузки показана на рис. 4.38, б. Чтобы построить эпюру изгибающих моментов от единичной обобщенной силы, приложим эту силу к балке. Поскольку определяем прогиб в точке D, то согласно методу Максвелла – Мора прикладываем в точке D сосредоточенную силу, равную единице (рис. 4.38, в). Находим опорные реакции и строим эпюру М1 аналогично выполненному ранее построению эпюры ММ (рис. 4.38, г). Вычисляем прогиб в точке по формуле Максвелла – Мора, перемножая эпюры ММ и М1:

.

Теперь ищем прогиб в точке D от лишней неизвестной Х. Строим эпюру МХ (рис. 4.38, е) и перемножаем ее с эпюрой М1, пользуясь правилом Верещагина:

.

Складываем и , находим полное перемещение и в соответствии с условием совместности деформаций приравниваем его нулю:

.

Отсюда .

Рис. 4.39. Окончательные эпюры

внутренних усилий в заданной балке

Итак, мы нашли лишнюю неизвестную Х из условия совместности деформаций. Прикладываем ее к заданной системе, не меняя направления, так как значение Х получилось положительным. Строим окончательные эпюры внутренних усилий и от заданных нагрузок (пары сил М), и от лишней неизвестной Х. Эти эпюры показаны на рис. 4.39, б, в.

Заканчиваем решение проверкой результатов. Часто можно обнаружить ошибку, если построить изогнутую ось балки. Изогнутая ось должна удовлетворять как эпюре моментов, которая показывает, в какую сторону направлена выпуклость оси балки после изгиба, так и условиям закрепления балки. На рис. 4.39, а показана деформированная ось балки, удовлетворяющая указанным условиям. Заметим, что из-за наличия шарнира возможен перелом изогнутой оси в точке Е, так как сечения, примыкающие к шарниру поворачиваются на разные углы. Если не удается построить изогнутую ось так, чтобы она удовлетворяла всем условиям, то следует искать ошибку. Эта проверка носит качественный характер и не всегда дает возможность найти ошибку в вычислениях. Проверкой, подтверждающей правильность вычисления лишней неизвестной, является условие (4.29), то есть результатом перемножения окончательной эпюры М с эпюрой изгибающих моментов от единичной обобщенной силы М1 (по правилу Верещагина) должен быть ноль. Делая эту проверку, мы еще раз проверяем равенство нулю прогиба в точке D в нашей задаче, поскольку смыслом этого перемножения является согласно методу Максвелла – Мора определение перемещения по направлению обобщенной силы (прогиба в точке D в решаемой задаче). Проверим решение нашей задачи:

.

4.3.2. Расчет статически неопределимой рамы

(задача № 24)

Условие задачи

В раме, показанной на рис. 4.40, требуется определить внутренние усилия и построить ось рамы после деформации. Жесткость всех стержней рамы одинакова и равна EI.

Решение

Рассматриваемая рама является один раз статически неопределимой и для выбора основной системы требуется отбросить одну лишнюю связь. Такой лишней связью будем считать шарнирно-

Рис. 4.40. Схема рамы с нагрузками

Рис. 4.41. Основная система

подвижную опору в точке В. Основная система с отброшенной лишней связью показана на рис. 4.41. Лишняя неизвестная, то есть реакция в отброшенной лишней связи, обозначена буквой Х. Условие совместности деформаций для выбранной основной системы – это условие, приравнивающее нулю горизонтальное перемещение точки В: . Это перемещение складывается из перемещения, вызванного всей заданной нагрузкой , и перемещения от лишней неизвестной . Тогда условие совместности деформаций запишем так:

.

Будем искать перемещения методом Максвелла – Мора с использованием правила Верещагина. Для этого построим три эпюры изгибающих моментов в основной системе: от заданной нагрузки (рис. 4.42, а), от единичной силы, соответствующей горизонтальному перемещению в точке В (рис. 4.42, б), и от лишней неизвестной Х (рис. 4.42, в). Для определения перемножим эпюры МР и М1:

.

Рис. 4.42. Эпюры изгибающих моментов: а – от заданной нагрузки;

б – от единичной силы; в – от лишней неизвестной Х

Рис. 4.43. Окончательные эпюры внутренних усилий

Горизонтальное перемещение точки В от лишней неизвестной Х

.

Подставим найденные перемещения в условие совместности деформаций и найдем значение лишней неизвестной:

Рис. 4.44. Изогнутая ось рамы

, откуда кН.

Строим окончательные эпюры внутренних усилий, приложив к основной системе все нагрузки, включая найденное значение Х (рис. 4.43). Выполним проверку, перемножив эпюру М с эпюрой М1.

=147,24 – 147,3  0.

Изогнутая ось рамы, соответствующая эпюре изгибающих моментов (рис. 4.43, г), и условиям закрепления показана на рис. 4.44. Крестиками на рисунке отмечены точки перегиба оси.

4.4. РАСЧЕТ ПЛОСКОГО ТРУБОПРОВОДА

НА ТЕМПЕРАТУРНОЕ ВОЗДЕЙСТВИЕ И

ВНУТРЕННЕЕ ДАВЛЕНИЕ

Рекомендуемая литература

Камерштейн А. Г., Рождественский В. В., Ручинский М. Н. Расчет трубопроводов на прочность: Справочная книга. М.: Недра, 1969. Гл. 21, 27.

Основные определения

Рис. 4.45. Температурные компенсаторы

Известно, что в статически неопределимых стержневых конструкциях возникают напряжения в результате температурного воздействия. Температурные напряжения особенно велики в стержне, защемленном по двум концам (см., например, решение задачи № 4 об определении температурных напряжений [5]). Для уменьшения температурных напряжений в такого рода конструкциях (например, в трубопроводах) используются температурные компенсаторы, которые увеличивают свободу деформаций за счет изгиба. Температурные компенсаторы представляют собой статически неопределимые рамы с двумя заделками по концам (рис. 4.45). В данном разделе рассматривается расчет плоских статически неопределимых рам (плоских трубопроводов) на температурное воздействие по методу упругого центра. Предполагается, что стержни рамы соединены между собой жестким образом под углом 90, все стержни имеют одинаковую жесткость.

Рассматриваемые рамы являются три раза статически неопределимыми системами. Выберем основную систему для рамы, показанной на рис. 4.45, а, отбросив левую заделку (рис. 4.46). Лишними неизвестными являются реакции в защемлении: Х1, Х2 и Х3. В точке О поместим начало декартовой системы координат хОy. Положительное направление силы Х1 должно совпадать с направлением оси х, силы Х2 – с направлением оси y. Положительное направление пары сил Х3 должно соответствовать направлению поворота оси х к оси y. Можно показать, что решение канонической системы уравнений метода сил для выбранной основной системы дает такие формулы для определения лишних неизвестных:

; (4.30)

; (4.31)

. (4.32)

Рис. 4.46. К расчету трубопровода:

а – основная система;

б – точка С – упругий центр

В этих формулах Т – изменение температуры;  – коэффициент линейного температурного расширения; EI – жесткость стержней рамы; Lx, Ly – суммарные длины стержней рамы, параллельных осям х и y. При вычислении длины стержня учитывается направление обхода по длине стержня от начала координат. Если обход осуществляется по направлению оси, то длина участка рамы считается положительной, в противном случае – отрицательной. Например, для рамы, показанной на рис. 4.46, Ly = 0, так как обход левой стойки рамы от начала координат происходит по направлению оси y, а обход правой стойки – против направления оси.

Чтобы пояснить, что такое хс, yc, ,и , будем рассматривать раму как плоскую фигуру, состоящую из прямоугольников. Одна сторона каждого прямоугольника равна длине участка рамы, а другая сторона (толщина) всегда равна 1. Например, рама на рис. 4.46 считается плоской фигурой, состоящей из пяти прямоугольников с длинами соответственно l1, l2, l3 и 2l4 и толщиной всех прямоугольников, равной 1. Тогда хс, yc – координаты центра тяжести этой плоской фигуры в системе координат xОy. Центр тяжести фигуры (точка С на рис. 4.46, б) называется упругим центром. Через упругий центр проведем центральные оси xc, yc, параллельные осям x, y. В формулах (4.30), (4.31) ,и – осевые и центробежный моменты инерции рассматриваемой плоской фигуры относительно центральных осей xc, yc.

Напомним некоторые формулы. Координаты центра тяжести плоской фигуры находим так:

; , (4.33)

где А – площадь фигуры. В данном случае, так как толщина всех прямоугольников равна единице, площадь равна сумме длин всех участков рамы. Для рамы на рис. 4.46 ; Sx, Sy – статические моменты фигуры относительно осей x, y, которые находятся как суммы статических моментов каждого прямоугольника относительно осей x, y. Статический момент каждого прямоугольника равен произведению площади прямоугольника на координату центра тяжести прямоугольника в системе координат хОy.

Моменты инерции плоской фигуры вычисляются как суммы моментов инерции простых фигур, составляющих данную фигуру, в рассматриваемом случае момент инерции всей фигуры равен сумме моментов инерций прямоугольников единичной толщины. Для каждого прямоугольника справедливы формулы

; (4.34)

; (4.35)

, (4.36)

где – площадь прямоугольника (, ); a, b – координаты центра тяжести прямоугольника в системе координатных осей xc, yc; , – моменты инерции прямоугольника относительно собственных центральных осей x0, y0, параллельных осям xc, yc. Если ось x0 (или y0) расположена вдоль рассматриваемого участка трубопровода, то есть параллельна стороне прямоугольника li, то можно считать (или ). Если же ось x0 (или y0) перпендикулярна стороне li, то . В формуле (4.36) учтено, что центробежный момент инерции прямоугольника относительно собственных осей x0, y0 равен нулю, так как эти оси являются главными осями инерции прямоугольника.

После определения величин лишних неизвестных по формулам (4.30) – (4.32) строим эпюры внутренних усилий в основной системе, как в обычной статически определимой раме. Эпюру изгибающих моментов можно проверить следующим образом. В упругом центре приложим найденные силы Х1 и Х2, нарисовав их в масштабе. Определим графически равнодействующую этих сил. Точки пересечения линии действия этой равнодействующей с осью рамы – это точки, в которых изгибающий момент должен равняться нулю (точки A, B, D на рис. 4.46, б).

Построив эпюры внутренних усилий, проверим прочность конструкции, имея в виду, что поперечное сечение стержней рамы – труба и, кроме температурного воздействия, труба испытывает действие внутреннего давления. Максимальные нормальные напряжения х, действующие на площадках, перпендикулярных оси трубы, находим, складывая напряжения от продольной силы и максимального изгибающего момента в опасном сечении рамы13:

. (4.37)

Для проверки прочности трубы из пластичного материала по формуле (4.37) находим максимальное по модулю напряжение. Если труба выполнена из хрупкого материала, при проверке прочности важен знак напряжений. Кольцевое напряжение  , возникающее от внутреннего давления q, определяем по формуле

, (4.38)

Рис. 4.47. К определению напряжений в трубе:

а – распределение напряжений х в опасном сечении;

б – напряженное состояние опасных точек

где R и  – соответственно внешний радиус и толщина трубы. Напряжение  всегда растягивающее. На рис 4.47, а показана эпюра распределения напряжений х в опасном сечении при положительной продольной силе. Рис. 4.47, б изображает напряженное состояние опасных точек 1, 1. Так как касательные напряжения на площадках элементов, показанных на рис. 4.47, б, отсутствуют, то эти площадки являются главными. Проверку прочности в опасных точках осуществляем по теории прочности, соответствующей материалу трубы.