Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лекция 17. Электролиз. Коррозия. Получение металлов

.pdf
Скачиваний:
56
Добавлен:
28.03.2016
Размер:
176.09 Кб
Скачать

Лекция 17. Электролиз расплавов. Способы получения металлов. Химическая и электрохимическая коррозия

Электролиз расплавов солей

Коли память нам с Вами не изменяет, то прошлая лекция завершилась обсуждением такого явления как электролиз растворов солей. Электролиз – разложение вещества под действием электрического тока. Естественно, что электролизу, в первую очередь, подвержены электролиты, т.е. вещества, которые в растворе или в расплаве проводят электрический ток.

Электролиз растворов имеет два ограничения:

-во-первых, ему повергаются только растворимые вещества, нерастворимые соли «чихали на то, что мы их пробуем разложить действием электрического тока»;

-во-вторых, в системе присутствует дополнительный компонент – растворитель (в нашем случае вода), который, как Вы помните, не всегда инертен. Например, при электролизе водного раствора хлорида натрия на катоде восстанавливается не катион натрия, а вода.

Таким образом, есть некоторые упрямые соли, которые совершенно не желают повергаться электролизу в водных растворах. К сожалению, нам придется с ними поступить довольно сурово: сильно нагреть, расплавить и подвергнуть действию тока при высокой температуре.

Электролиз расплавов несложен, общее правило: на катоде восстанавливается катион металла, на аноде – анион кислотного остатка. При этом в случае бескислородных солей образуется простое вещество – галогены, сера, селен и пр., а в случае кислородсодержащих солей – выделяется кислород и получается соответствующий оксид элемента, образовавший соль.

Лекция 17. Электролиз расплавов. Способы получения металлов. Химическая и электрохимическая коррозия

Замечание 1: обратите внимание, не все вещества удается расплавить. Иногда при нагревании вещества еще до плавления происходит его разложение (или испарение), так что получить расплав становится невозможным.

Замечание 2. Остановимся ещё на одном «тонком» моменте: вообще-то говоря, для того чтобы провести электролиз, к веществу нужно подвести электрический ток, т.е. нужно опустить в раствор или в расплав электроды. Следовательно, мы добавляем в систему посторонний компонент. Разобранные выше примеры следует отнести к тому случаю, когда материал электродов инертен. Примером таких электродов являются угольные, или графитовые, т.е. состоящие из аллотропной модификации углерода – графит. В строгом смысле слова, графит не является абсолютно инертным: если на графитовом аноде выделяется кислород, то происходит окисление (и даже выгорание) электрода с образованием углекислого газа.

Существуют примеры растворимых анодов, например, медный анод – в таком случае при электролизе анод будет окисляться и растворяться – для примера посмотрите гальванический элемент Даниэля-Якоби из прошлой лекции с растворимым цинковым анодом.

Пример 1. Электролиз расплава оксида алюминия. В связи с тем, что оксид алюминия – очень тугоплавкое соединение, проводят электролиз расплава оксида алюминия в криолите – гексафторалюминате натрия Na3AlF6. Таким образом удается снизить температуру, необходимую для проведения электролиза.

Замечание. Когда смешивают 2 твердых вещества, часто наблюдают депрессию (снижение) температуры плавления, т.е. смесь двух твердых веществ плавится ниже, чем каждое из веществ по отдельности.

Al2O3 (расплав) 2Al3+ + 3O2- - один из немногих примеров, когда действительно существует оксид-анион

Лекция 17. Электролиз расплавов. Способы получения металлов. Химическая и электрохимическая коррозия

Катод (-): Al3+ + 3e- Al0. Анод (+): 2 O2- – 4e- O20.

Общее уравнение электролиза: 2Al2O3 (расплав) 4 Al0 + 3 O20.

Пример 2. Электролиз расплава сульфата железа(III)

Fe2(SO4)3 (расплав) 2Fe3+ + 3SO42- Катод (-): Fe3+ + 3e- Fe0.

Анод (+): 2 SO42- – 4e- 2 SO3 + O20.

Общее уравнение электролиза: Fe2(SO4)3 (расплав) Fe0 + 2 SO3 + O20.

Пример 3. Электролиз расплава хлорида меди(II)

CuCl2 (расплав) Cu2+ + 2 Cl- Катод (-): Cu2+ + 2e- Cu0. Анод (+): 2 Cl- – 2e- Cl20.

Общее уравнение электролиза: CuCl2 (расплав) Cu0 + Cl20.

Расчеты по уравнениям реакций

Электролиз – химический процесс и может быть выражен посредством уравнений химических реакций. Следовательно, не удивляйтесь, если встретите задания, которые предполагают проведение расчетов.

Задача. При электролизе раствора хлорида меди(II) на одном из электродов (каком?) выделился газ объемом 11,2 л. Какой продукт и в каком количестве (в граммах) выделился на другом электроде?

Решение. Запишем уравнение электролиза раствора хлорида меди(II). CuCl2 Cu2+ + 2Cl-

Катод (-): Cu2+, H2O

Cu2+ + 2e- = Cu0.

Анод (+): Cl-, H2O

2Cl- - 2e- = Cl20.

Лекция 17. Электролиз расплавов. Способы получения металлов. Химическая и электрохимическая коррозия

CuCl2 Cu + Cl2

Таким образом, газ, выделившийся на аноде – хлор. Его количество рассчитываем как отношение объема к молярному объему, получаем ½ моль. Согласно уравнению электролиза меди на катоде образовалось такое же количество, т.е. ½ моль. Молярная масса меди 63,55 г/моль, т.е. масса меди примерно 31,8 г.

Коррозия металлов

Уничтожает все кругом: Цветы, зверей, высокий дом, Сжует железо, сталь сожрет И скалы в порошок сотрет. Мощь городов, власть королей Его могущества слабей

Дж. Р.Р. Толкиен. Хоббит, или Туда и обратно

Металлы обладают высокой твердостью и прочностью. Однако и у них есть страшный враг. Его имя – коррозия. Коррозия – процесс разрушения металлов под действием факторов внешней среды. В зависимости от природы различают химическую и электрохимическую коррозию.

Химическая коррозия – разрушение металла под действием химических веществ, не сопровождающееся возникновением электрического тока. Пример такой коррозии – растворение металла действием кислот. Лучшая иллюстрация – научно-фантастический фильм Стивена Спилберга «Чужой», в котором астронавты сталкиваются с инопланетной формой жизни, жидкая ткань которой представляет сильную кислоту, которая способна разрушить обшивку межпланетного корабля.

Электрохимическая коррозия – это разрушение металла, при котором в системе возникает электрический ток.

Остановимся на ней подробнее. Для примера возьмем кусок железа, на который попала капля воды. Как Вы знаете, в воде в небольшом количестве растворяется кислород. Получившаяся система моделирует классический гальванический элемент, в котором электроды (катод и анод) сделаны из

Лекция 17. Электролиз расплавов. Способы получения металлов. Химическая и электрохимическая коррозия

железа и соединены железным металлическим проводником, причем один электрод опустили в раствор (каплю воды).

Одним из электродов является железный Fe2+ + 2e- = Fe0, стандартный электродный потенциал железного электрода E0Fe2+/Fe0 = – 0,44 В.

Другим электродом является железный электрод, на котором происходит реакция восстановления кислорода:

O2 + 2 H2O + 4e- = 4 OH-, E0O2/2OH- = + 0,401 В или O2 + 4 H+ + 4e- = 2 H2O, E0O2/H2O = + 1,229 В

Как мы видим, потенциал второго электрода сильно зависит от pH раствора, однако даже в нейтральной среде вполне достаточен для того,

чтобы окислить железо, т.е. сложившиеся условия вполне достаточны для работы гальванического элемента.

Уравнение процесса:

2 Fe0 + O2 + 2 H2O = 2 Fe(OH)2 или 2 Fe0 + O2 + 4 H+ = 2 Fe3+ + 2 H2O.

Таким образом, в некоторой точке нашего куска металла происходит растворение железа (растворимый анод), а на поверхности катода происходит образование гидроксида железа(II). Последний, в свою очередь, реагирует с влажным воздухом, что приводит к появлению бурого, коричневого или оранжевого налета, известного нам под названием ржавчина.

4 Fe(OH)2 + O2 + 2 H2O = 4 Fe(OH)3

Замечание. Вообще говоря, ржавчина представляет собой смесь оксидов и гидроксидов железа в разной степени окисления,

преимущественно Fe3O4 (FeO·Fe2O3), Fe2O3, Fe(OH)3.

Итак, вода и кислород обеспечили возможность существования жизни на планете Земля, однако эти же вещества являются страшными врагами железа и других металлов. Более того, процессы коррозии очень чувствительны к температуре окружающей среды: в Северном Ледовитом океане спустя десятки лет находят корпуса военно-морских судов,

Лекция 17. Электролиз расплавов. Способы получения металлов. Химическая и электрохимическая коррозия

затонувших в XVI-XX веках, тогда как под жарким солнцем во влажных тропических лесах Амазонки срок службы автотранспорта сокращается до нескольких месяцев.

Итак, коррозия – очень неприятный процесс и способна сильно усложнить и испортить нашу с Вами жизнь. Когда нам что-то угрожает, мы защищаемся.

Самый простой способ защиты – окраска, для того чтобы слой краски защищал металл от влаги. Примеров таких покрытий довольно много: масляные краски, лаки, железный сурик, эмаль. Однако подобная окраска не всегда возможна.

Катодная защита. А что произойдет, если мы на поверхность железа нанесем слой менее активного металла, например олова? Такой процесс называется лужением. При этом чувствительное к кислороду воздуха железо будет спрятано под слоем довольно инертного олова. К сожалению, данная защита эффективна лишь до тех пор, пока защитный слой цел. Если удалось его повредить (химически или механически), то кислород и влага получают доступ к железу, а олово из союзника оказывается вредителем – возникает гальваническая пара железо-олово, т.е. в системе появляется новый, оловянный электрод, который ускоряет коррозию железа:

Пример катодной защиты – консервные банки с мясными или овощными консервами. Помните: защита от коррозии эффективна до тех пор, пока цел защитный слой. Именно поэтому запрещается продажа деформированных (помятых, вогнутых, вздутых и пр.) банок консервов – нет гарантии, что защитный слой невредим, поэтому консервы могут быть опасными для здоровья.

С другой стороны, если в силу обстоятельств неодолимой силы Вы не можете забрать с собой с места пикника банки из-под консервов, их следует обжечь в костре, для того, чтобы нарушить защитный слой. Обожженные

Лекция 17. Электролиз расплавов. Способы получения металлов. Химическая и электрохимическая коррозия

консервные банки будут разрушаться быстрее, так как не защищены от действия влаги и воздуха.

Анодная защита, напротив, предполагает контакт железа с более активным металлом. Примером анодной защиты может служить гордость отечественного автопрома – автомобиль ИЖ: «Кузов-то с оцинковкой!». Оцинкованное железо представляет собой сплав, в который добавлен цинк. При контакте с кислородом и водой основной удар принимает на себя более активный металл – цинк, тогда как железо остается инертным. Соответственно коррозия начнется лишь тогда, когда будут исчерпаны резервы защиты. Оцинкованное железо используют для изготовления ведер, кузовов автомобилей, покрытия крыш домов.

На этом месте, если у Вас не возникло вопросов, мы прощаемся с курсом общей химии и открываем новую главу химической науки и школьного курса химии, которая называется Неорганическая химия.

Неорганическая химия. Металлы.

В курсе неорганической химии наша задача – знакомство с химическими свойствами элементов и их соединений и методами их получения.

Поскольку большую часть Периодической системы составляют металлы, мы начнем с них.

1. Положение в Периодической системе. Как Вы знаете, к металлам относят элементы главных подгрупп, находящихся ниже диагонали борастат, а также элементы побочных подгрупп (d-элементы), лантаноиды и актиноиды (f-элементы). Довольно типичным признаком металлов является наличие небольшого количества электронов на внешнем энергетическом

Лекция 17. Электролиз расплавов. Способы получения металлов. Химическая и электрохимическая коррозия

уровне. Следовательно, металлы будут склонны отдавать эти электроны

вхимических реакциях, т.е. по определению являться восстановителями.

2.Физические свойства металлов Вам также более-менее известны.

Металлы за небольшим исключением представляют собой довольно прочные твердые вещества серого цвета, иногда с блеском. Температуры плавления изменяются в очень широком диапазоне от -39oC (ртуть) до > +3000oC (вольфрам), среди металлов есть мягкие (литий, натрий, золото), которые можно резать ножницами или ножом и очень твердые (ниобий, тантал, вольфрам). Общие свойства металлов обусловлены их строением, в основе которого лежит металлическая кристаллическая решетка, которая образована слоями из атомов и катионов металлов, между которыми находятся относительно свободные электроны (электронный газ). Вследствие подобного строения металлы обладают высокой тепло- и электропроводностью. Для многих металлов характерна ковкость – способность приобретать определенную форму при механических деформациях без разрушения.

3.Методы получения металлов.

3.1.Наиболее распространенный и относительно простой способ получения чистых металлов – электролиз водных растворов их солей. Данный метод непригоден для получения активных металлов и ограничен получением металлов средней активности и малоактивных металлов.

Примеры см. лекцию 16.

3.2.Электролиз расплавов солей и оксидов. Данный метод довольно универсален, однако требует значительных затрат энергии и топлива, поэтому применим для получения лишь некоторых конкретных металлов, например, алюминия электролизом расплава оксида алюминия в криолите. Напротив, нет смысла получать таким способом малоактивные металлы, так как они могут быть довольно легко получены методом 3.1. электролизом водных растворов солей.

Лекция 17. Электролиз расплавов. Способы получения металлов. Химическая и электрохимическая коррозия

Примеры: см. выше, лекция 17.

3.3.Благодаря различному расположению металлов в электрохимическом ряду напряжений металлов, менее активные металлы могут быть выделены из растворов солей действием более активных металлов.

Вкачестве более активных металлов используют металлы средней активности (цинк, железо), но не наиболее активные (натрий, калий), так как последние слишком активны и реагируют преимущественно с водой, а не с солью металла.

Примеры:

Довольно чистую медь получают действием на раствор медного купороса цинковой пыли – при этом образуется мелкодисперсный губчатый осадок металлической меди красного цвета, который очищают от непрореагировавшего цинка обработкой разбавленной соляной кислотой.

CuSO4 + Zn = ZnSO4 + Cu. (Cu, Zn)+ 2 HCl = ZnCl2 + H2 + Cu

3.4.Очень типичным является восстановление металлов из их оксидов. Наиболее известна реакция алюминотермии, когда на оксид металла действуют алюминием при высокой температуре. Например, смесь алюминия с оксидом железа(III) получила название «термит». Поджиг этой смеси запускает реакцию, которая далее происходит самостоятельно и сопровождается выделением большого количества тепла, что нашло применение во взрывотехнике и военном деле, например, для прожигания брони.

Fe2O3 + 2 Al = Al2O3 + 2 Fe (требует сильного нагревания)

3.5.Важным промышленным процессом является выплавка чугуна. Для этого железную руду, которая, в основном, обычно состоит из оксида железа(III), подвергают действию угля (углерод) при высокой температуре.

Лекция 17. Электролиз расплавов. Способы получения металлов. Химическая и электрохимическая коррозия

Fe2O3 + 3 C = 2 Fe + 3 CO(высокая температура) CuO + C = Cu + CO(высокая температура)

Как свидетельствуют рисунки, данный метод (куски руды, например CuO или CuS бросали в костер, а затем после остывания собирали слитки металла) был открыт персами еще в III тысячелетии до н.э., которые использовали его для выплавки меди. Для того, чтобы освоить выплавку железа потребовалась ещё тысяча лет, так как выплавка железа требовала более совершенного оборудования: были изобретены кузнечные мехи, для того, чтобы нагнетать в область реакции воздух (кислород) и поддерживать более высокую температуру, необходимую для восстановления железа. В настоящее время выплавку чугуна осуществляют в огромных доменных печах.

Оксид углерода(II) также является восстановителем, однако принято, что основным восстановителем является именно углерод, его больше Fe2O3 + CO = Fe + CO2 (высокая температура)

CuO + CO = Cu + CO2 (высокая температура)

Данный метод непригоден для выделения из оксидов активных металлов, так как последние способны реагировать с углеродом с образованием карбидов:

2 Al2O3 + 9 C = 6 CO + [Al] = 6 CO + Al4C3 – карбид алюминия CaO + 3 C = CO + [Ca] = CO + CaC2 – карбид кальция

MgO + C = CO + [Mg] = CO + MgC2 + Mg4C3 – карбиды магния

3.6.Восстановить металлы из оксидов возможно нагреванием в токе водорода, однако данный метод имеет ограниченное применение, так как требуется газообразный водород (при контакте с газообразным

кислородом образуется гремучая смесь – опасность взрыва!), нагрев, метод пригоден для некоторых металлов средней активности и малоактивных металлов.