Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие.doc
Скачиваний:
124
Добавлен:
24.03.2016
Размер:
5.07 Mб
Скачать

Тема 4 Химическая связь

Химическая связь – это взаимное сцепление атомов в молекуле в результате перекрывания их электронных облаков. Образованию химической связи может предшествоватьгибридизация АО: преобразование различающиеся по форме и энергии АО разных подуровней в такое же количество гибридных молекулярных орбиталей. Гибридные орбитали имеют одинаковую энергию и форму, что обеспечивает равноценность образующихся связей. Гибридные орбитали более вытянуты в направлении образования химической связи и обеспечивают лучшее перекрывание с орбиталями присоединяющегося атома, чем негибридизованные. В гибридизации могут участвовать и d-орбитали внешнего или предвнешнего квантового уровня. Тип гибридизации АО центрального атома определяет геометрическую форму образующихся молекул или ионов.

Таблица 4

Форма молекул и тип гибридизации центрального атома

Гибридизация центрального

атома

Геометрическая форма

молекулы или иона

Угол между

связями

Пример молекулы или иона

sp

Линейная

180°

BeF2, CH≡CH, [Ag(NH3)2]+

p2

Угловая

90°

H2S, TeCl2

sp3

Угловая

~109,5°

H2O

sp2

Плоский треугольник

120°

BF3, CO32

sp2

Плоский прямоугольник

120°

CH2=CH2

sp3

Тетраэдр

109,5°

CH4, NH4+

d 3s

Тетраэдр

109,5°

TiCL4

sp3

Тригональная пирамида

~109,5°

NH3, Н3О+, SО32–

sp3d

Тригональная бипирамида

90°, 120°

PCl5,

sp3d2

Октаэдр

90°

SF6, [АlF6]33–

d2sp3

Октаэдр

90°

[Fе(СN)6]4–

dsp2

Плоский квадрат

90°

[PdСl4]2–

Рассмотрим образование молекул с разным типом гибридизации центрального атома.

При образовании молекулы ВеF2 атом бериллия переходит в возбужденное состояние и имеет два неспаренных электрона один на 2s- и один на 2р-орбитали. Гибридизация этих АО приводит к образованию двух sp-гибридных молекулярных орбиталей, расположеных в молекуле под углом 180°, поскольку в таком случае электроны на этих орбиталях испытывают наименьшее взаимное отталкивание. В результате молекула ВF2 имеет линейное строение. Молекула неполярна. В молекуле две равноценные σ-связи Be–F, π-связей нет. Связи полярны, электронная плотность смещена к более электроотрицательному атому F. На рисунке для атомов F показаны только 2р-электроны, образующие связи.

а)

б)

F Be F

Рисунок 2 Молекула BeF: а) sp-гибридизация АО бериллия и образование двух σ-связей; б) пространственное строение молекулы

При образовании молекулы ВF3 три неспаренных электрона атома бора в возбужденном состоянии расположены на АО 2s, 2рх, 2рz. В результате гибридизации образуются три гибридные sp2-орбитали. Для достижения минимального отталкивания гибридные орбитали направлены в углы правильного треугольника, углы между орбиталями равны 120°. В результате молекула ВF3  имеет форму плоского треугольника, ядро атома бора располагается в центре. Молекула ВF3 неполярна. В молекуле три σ-связи, все связи равноценны, π-связей нет. Связи полярны, электронная плотность смещена в строну атома F.

б)

в)

Рисунок 3 Молекула ВF3: а) гибридизация АО бора и образование трех σ-связей; б) ориентация в пространстве исходных атомных 2s-, 2рx- и 2рz-орбиталей; в) ориентация в пространстве гибридных sp2-орбиталей

При образовании связей атомами C, N, О и Cl в гибридизации участвуют одна s-орбиталь и три p-орбитали, во всех случаях образуются четыре sp3-гибридные орбитали, направленные в пространстве от ядра к углам тетраэдра. Углы между орбиталями во всех случаях близки к 109°, однако форма молекул, образуемых этими атомами различны.

В молекуле метана СН4 четыре σ-связи, π-связей нет, связи полярны, электронная плотность смещена к атому С. Форма молекулы тетраэдрическая, молекула неполярна, угол между орбиталями равен 109,46°.

а)

б)

Рисунок 4 Молекула СН4: а) гибридизация АО углерода и образование четырех σ-связей; б) ориентация в пространстве гибридных sp3-орбиталей

В

+

молекуле аммиака NH3 на одной из четырех sp3-гибридных орбиталей азота располагается два спаренных электрона (неподеленная пара электронов), т.е. в молекуле образуется только три σ-связи, π-связей нет. Молекула NH3 имеет форму тригональной пирамиды, в вершине пирамиды – атом азота. Угол между орбиталями составляет 107,8° и отличается от тетраэдрического (109,5°) вследствие более сильного взаимного отталкивания неподеленных электронных пар по сравнению с электронами σ-связи N–Н. Молекула полярна, на атоме азота локализуется частичный отрицательный заряд. Ион аммония NH4+ имеет тетраэдрическое строение.

NH3 NH4+

тригональная пирамида тетраэдр

а)

б)

Рисунок 5 Молекула NH3: а) гибридизация АО азота, образование гибридных sp3-орбиталей и трех σ-связей; б) пространственное строение молекулы NH3 и иона NH4+

В молекуле воды Н2О на двух sp3-гибридных орбиталях кислорода располагается неподеленные пары электронов. В молекуле две σ-связи, π-связей нет. Вследствие отталкивания неподеленных электронных пар, угол между связями О–Н отклоняется от тетраэдрического и составляет 104,5°.

б)

а)

Рисунок 6 Молекула H2О: а) гибридизация АО кислорода, образование гибридных sp3-орбиталей и двух σ-связей; б) пространственное строение молекулы H2О.

При образовании комплексного иона [АlF6]33– в гибридизации участвуют вакантные 3d-орбитали алюминия и образуется шесть гибридных sp3d2-орбиталей, направленных к углам октаэдра. Форма иона октаэдрическая, число σ-связей шесть, угол между связями 90°, π-связей нет.

Рисунок 7 Образование иона [АlF6]33– и ориентация sp3d2-гибридных орбиталей

Комплекс [Fе(СN)6]4– тоже имеет октаэдрическую форму, хотя гибридизация d2sp3-типа. Гибридизация с участием d-орбиталей приводит также к квадратной и тетраэдрической формам молекул и ионов.

Задание 4 контрольной работы

Определить пространственную структуру молекулы, тип гибридизации центрального атома (если есть), число σ- и π-связей, полярность связей и полярность молекулы в целом.

Вариант

Молекула

Вариант

Молекула

Вариант

Молекула

91

H2O

101

AsH3

111

CO2

92

PH3

102

[PtСl4]2–

112

BeI2

93

Cl2

103

BeBr2

113

SO2

94

CO32

104

SCl6

114

H2Te

95

NH3

105

N2

115

HI

96

CF4

106

SiH4

116

I2

97

C2H2

107

BCl3

117

[АlF6]33–

98

SiF4

108

H2Se

118

CCl4

99

OF2

109

HBr

119

AlCl3

100

TiCl4

110

C2H4

120

COCl2