Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КУРС лекций ОРД ч1 31_01_2011-см.doc
Скачиваний:
287
Добавлен:
18.03.2016
Размер:
5.31 Mб
Скачать

6.6 Антенны систем радиосвязи

Простейшим излучателем электромагнитного поля (ЭМП) может служить короткий отрезок электрического проводника, физическая длина которого L много меньше длины излучаемой волны λ. В этом случае модуль линейной плотности электрического тока I будет распределён по длине излучателя равномерно. Такой излучатель называется диполем Герца, представляющим два небольших металлических шара, соединённых отрезком проводника.

В разрез проводника включается источник переменного тока (рис.6.4).

Рис.6.4 Диполь Герца

Наличие шаров на концах проводника существенно уменьшает необходимую длину диполя Герца.

Следует иметь в виду, энергия ЭМП, возникающая в проводнике, существенно зависит от его конфигурации и соотношения размеров проводника и длины волны электромагнитного поля.

Устройства, предназначенные для излучения и приёма электромагнитных колебаний, называются антеннами. Простейшую излучающую антенну к источнику переменного тока (рис.6.5) можно сделать из отрезка электрического проводника размером в половину длины излучаемой (принимаемой) волны, в середину которого включён генератор переменного тока.

Рис 6.5 Полуволновый вибратор

Рис 6.6 Диаграмма направленности полуволнового вибратора

Такую антенну называют полуволновым вибратором.

Наглядное представление о характере излучения даёт диаграмма направленности (ДН), отражающая зависимость плотности потока мощности от направления в пространстве. ДН вертикально расположенного полуволнового вибратора представлена на рис.6.6.

В горизонтальной плоскости ДН имеет вид окружности, в вертикальной вид − вытянутых восьмёрок. Диаграмму направленности полуволнового вибратора (1) можно улучшить, если в направлении, обратном излучению, установить рефлектор (2) на удалении от активного вибратора менее λ/4 и в направлении излучения установить директоры (3), подбирая их длину и расстояние между ними (рис.6.7).

Рис.6.7 Антенна «волновой канал»

Антенну такого типа называют «волновой канал». Она широко используется в системах связи метрового диапазона волн, как передающая, так и приёмная.

6.6.1 Основные характеристики антенн

Угол раскрыва − диаграмма направленности антенны по уровню половинной мощности α (рис.6.7).

Коэффициент направленного действия КНД показывает, во сколько раз средняя мощность, излучаемая (принимаемая) направленной антенной, в заданном угле её диаграммы направленности больше средней мощности в том же угле ненаправленной антенны, работающей от того же источника.

Коэффициент усиления антенны − GА характеризует усилительные

свойства антенны с учётом потерь при излучении. Он определяется как произведение КНД на коэффициент полезного действия антенны.

G = КНД ⋅η, (6.9)

Коэффициент усиления антенны выражается в логарифмических

величинах децибелах (дБ).

В диапазоне километровых волн габариты даже одновибраторных антенн оказываются столь большими, что возникают существенные трудности их реализации. Задача несколько упрощается, если в качестве второго проводника вибратора использовать проводящую землю и получать четвертьволновый заземлённый вибратор (рис.6.8).

Рис.6.8 Штыревая антенна

Такого типа антенны называют штыревыми. Мощность, излучаемая таким вибратором, в два раза меньше, чем у полуволнового. В практических реализациях длина штыревой антенны может быть меньше λ/4. При этом мощность излучения, естественно, уменьшается.

Для создания остронаправленного излучения в диапазонах дециметровых и сантиметровых волн широко используют антенны с параболическим отражателем.

Излучатель такой антенны располагается в фокусе параболического зеркала. В этом случае отражатель концентрирует отражённые лучи в узкий пучок (рис.6.9).

Рис.6.9 Параболическая антенна

Чем меньше длина волны и больше диаметр зеркала, тем уже диаграмма направленности антенны и больше коэффициент усиления. В последние годы, и в первую очередь в радиолокационных системах, широко применяются фазированные антенные решётки – ФАР. Такие антенны представляют собой систему определённым образом расположенных в одной плоскости элементарных излучателей, питаемых через индивидуальные фазовращатели одним источником ВЧ колебаний (рис.6.10) или системой когерентных (сфазированных) источников. Электромагнитные поля, создаваемые каждым излучателем, суммируясь в пространстве вблизи антенны, образуют единый электромагнитный фронт волны с узкой диаграммой направленности. К важнейшему свойству ФАР относится возможность электронным способом с помощью компьютера и фазовращателей практически безынерционно изменять положение диаграммы направленности антенны в пространстве, что способствует быстрому нахождению целей в радиолокационном пространстве.

Рис.6.10 Фазированная антенная решетка

Для создания остронаправленных антенн количество излучателей достигает 10 000. Поэтому фазировка их сложна и осуществляется с помощью компьютера, и стоимость ФАР очень высока. Построение ФАР с помощью фазированных источников позволяет источникам малой мощности получать в пространстве ЭМП большой мощности. Это очень важно в диапазонах сантиметровых и миллиметровых волн, где создание источников большой мощности затруднено. В последние годы ФАР применяют в мобильной и спутниковой связи в виде так называемых интеллектуальных антенн.