Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kursach_GPP_2 (3)юра.docx
Скачиваний:
20
Добавлен:
12.03.2016
Размер:
84.47 Кб
Скачать

3.Выбор насоса.

Потребную мощность привода насоса ( кВт ) для работы цилиндра станка находим по формуле:

Nн = Rпс * Vшт / ( nгм.н. * nгм.ц.)

где nгм.н. и nгм.ц. – гидромеханические КПД насоса гидроцилиндра. По справочным данным среднее значение nгм.н. = 0,9; для цилиднра значение nгм.ц выбираем в зависимости от рабочего давления гидросистемы (таб.1)

При заданном рабочем давлении 30МПа, значение nгм.ц. = 0,98, тогда потребляемая мощность:

Nн = 49,45 * 0,0083/ (0,9*0,98) = 0,46 кВт

Таблица 1

Pном, МПа

10

14

16

20

25

32

nгм.ц.

0,93

0,94

0,95

0,96

0,97

0,98

По справочным данным для привода насоса выбираем асинхронный электродвигатель АОЛ2-11-2 У3 номинальной мощности 0,8 кВт при частоте вращения 3000 об/мин.

Полезная (выходная) мощность насоса, кВт:

Nп = Nн * nн

где nн – общий КПД насоса:

nн = nгм.н * nоб.н. = 0,9 * 0,98 = 0,882

Nп = 0,8 * 0,882 = 0,756 кВт

Действительная подача насоса Qн (м^3/c) находится по формуле:

Qн = Nп/pн = 0,756 * 10^3 / 30 * 10^6 = 0,0000252 (м^3/c)

Для перевода подачи насоса в л/мин умножим полученное значение на 60 000

Qн = 0,0000252 * 60000 = 1,512 (л/мин)

Потребляемый рабочий объем насоса Vo (м^3) находим по формуле:

Vo = Qн / (nн. * nоб.н.) = 1,512 / (3000*0,98) = 0,000514л = 0,51 см^3

По справочным данным выбираем ближайший больший по рабочему объему нерегулируемый аксиально-поршневой насос Н1С-006 с рабочим объёмом Vo = 6 см^3

4. Выбор гидроцилиндра

Внутренний диаметр цилиндра находят по формуле:

D = (4Rпс / п * nгм.ц.* pном)^(1/2) =

= (4* 230,79 * 10^3 / 3,14 * 0,97 * 25 * 10^6)^(1/2) = 0,11 м

Для диаметров гильз цилиндра D (мм) ГОСТ 6540-68 установлены следующие ряды: 80 (90); 100 (110); 125 (140); 160 (180); 200 (220) и т.д.

Принимаем диаметр цилиндра D = 0,11 м

Выбираем диаметр d его штока также с учетом рядов, приведенных в ГОСТ, отношение d/D = 0,6 d= 0,6 * 0,11 = 0, 066 м

Принимаем диаметр штока d = 0,08 м

  1. Оценка надёжности гидромеханизма и техническое решение по её выполнению

Интенсивность отказов:

λ' = 1/Tср, [ч-1],

где Tср – среднее значение наработки на отказ устройства, [ч], (табл.2).

Таблица 2

Гидроустройства

Интенсивность отказов λ'

Tср

Насосы аксиально-поршневые нерегулируемые

330

3000

Гидроцилиндры

108

9250

Распределители золотниковые

59

16850

Клапаны предохранительно-переливные

93

10750

Клапаны обратные, логические клапаны «ИЛИ»

19,6

51050

Гидропневмоаккумуляторы

50

20000

Фильтры

278

3600

Каждый контур состоит из следующих элементов ki с известными интенсивностями отказов.

  1. Насосный контур (k1 = 4): насос аксиально-поршневой (λ' = 133·10-6 ч1); клапан предохранительный (λ' = 93·10-6 ч-1); распределитель (λ' = 59·10-6 ч-1) и фильтр (λ' = 278·10-6 ч-1). Max интенсивность отказа контура: λ1 = 760·10-6 ч-1.

  2. Силовой контур (k2 = 1): гидроцилиндр (λ' = 108·10-6 ч-1).

Принимаем наработку станка в течение года T = 1200 ч.

Расчёт количественного значения надёжности каждого контура основывается на использовании экспоненциального закона:

P(k1) = e-λ·T = 1/2,7180,00076·1200 = 0,4

P(k2) = e-λ·T = 1/2,7180,000108·1200 = 0,879

Тогда вероятность безотказной работы гидромеханизма в течение планируемого периода:

P(t) = P(k1) ·P(k2) = 0,4·0,879 = 0,35

Для повышения надёжности изменим структурную схему механизма, применив автомат разгрузки насоса, приведенном на рис.2

1 – гидробак; 2 – насос; 3 – двухходовой распределитель; 4 – обратный клапан; 5- ПГАК; 6 – распределитель Р4/2; 7 – педаль; 8 – манометр; 9 – гидроцилиндр; 10 – фильтр; 11 – перепускной клапан; 12 – держатель ножа; А и Б – поршневая и штоковая полости.

Схема позволяет исключить предохранительный клапан. В ней применяют гидроцилиндр двустороннего действия, что позволяет исключить возвратную пружину, снизить динамику работы цилиндра, силу сопротивления на штоке при резке арматуры с 230,79 кН до 164,9 кН. Это, в свою очередь, уменьшает потребную мощность и подачу, позволяет выбрать более экономичный насос с меньшим рабочим объемом и гидроцилиндр меньших размеров и массы. Кроме того, для повышения надежности предусмотрен предохранительный клапан, работающий при засорении его фильтроэлемента.

Работа модернизированной схемы:

При отпущенной педали 7 рабочая жидкость под давлением от насоса 2 поступает через КО 4 по каналам распределителя 6 в штоковую полость Б цилиндра 9, а из полости А вытесняется на слив в гидробак с предварительной очисткой в фильтре 10. Одновременно с этим происходит заряд подключенного к напорной линии ПГАК 5.

По мере зарядки АК происходит перемещение двухходового гидроуправляемого распределителя 3. При этом насос обратным клапаном 4 отключается от заряженного АК и открытым двухходовым распределителем 3 и соединяется с гидробаком.

Таким образом ПГАК 5 находится в полностью заряженном состоянии, а насос переведен в дежурный режим, разгружен.

При нажатии на педаль 7 поршневая полость А цилиндра 9 сообщается с АК 5, а штоковая со сливом.

При выдвижении – шток выполняет рабочий ход и резка арматуры за счет гидравлической энергии накопленной в АК.

По мере расходования и снижения давления в АК происходит обратное переключение распределителя 3, подключенного насоса и напорной гидролинии, питание цилиндра в этот период работы осуществляется от насоса при одновременном заряде АК.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]