Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Studencheskie_konspekty_lektsy.doc
Скачиваний:
100
Добавлен:
09.03.2016
Размер:
1.42 Mб
Скачать

4. Клеточные механизмы гомеостаза.

Считается, что регуляторные механизмы клеток возникли еще на заре эволюции и наследственно закрепились в виде ингибирующих реакций. При этом УУ и ОУ совме­щены в одной клетке.

ДНК —> транскрипция —> трансляция — белок–фермент —> продукт

(ген) ферментативной реакции

А + В Р (продукт, который может ингибировать активность фермента)

Тканевой уровень (надклеточный).

На этом уровне регуляции УУ и ОУ находятся в разных клетках, которые обмени­ваются между собой сигналами. Так, тканеспецифические ингибиторы пролиферации клеток (кейлоны) управляют пролиферацией, ростом тканей с помощью отрицатель­ной обратной связи.

5. Системные механизмы гомеостаза:

Говоря о системном уровне гомеостаза, имеется в виду сохранение постоянства внутренней среды организма за счет функционирования нервной, эндокринной и им­мунной систем организма.

  • нервная система

является организатором всех процессов, которые происходят во внутренних средах ор­ганизма, а также при взаимодействии организма с окружающей средой.

В процессе эволюции живых существ проявилась отчетливая тенденция к центра-

ли­зации управления. При этом между различными уровнями гомеостатического

регули­рования существует четкая иерархическая взаимосвязь. Наверху этой иерархической лестницы стоит ЦНС, точнее КБП.

КБП —►подкорковые образования —► эндокринная система —► клетки

внутриклеточные реакции

ССС ОДС ПС ВС

КБП (УУ) воспринимает раздражитель (входной сигнал), который поступает из внешней и внутренней среды. КБП оценивает эти сигналы и дает команды клеткам, тканям, органам, главным образом, через эндокринные железы. Эти железы выраба– ты­вают гормоны, они с кровью достигают ОУ и влияют на ферментные системы клетки. На системном уровне УУ и ОУ находятся даже в различных органах.

  • эндокринная система

высшим центром регуляции эндокринных функций является гипоталамус, который посредством нейромедиаторов руководит работой других желез (гипофиз, половые, кора надпочечников).

Свое действие на клетки гормоны оказывают двумя путями: либо изменяют актив­ность генов, либо изменяют скорость биохимических реакций.

  • иммунная система

Иммунитет – способ защиты организма от живых тел и веществ, несущих признаки генетически чужеродной информации.

Иммунная система – совокупность всех лимфоидных органов и скопления лимфо­идных клеток (тимус, селезенка, лимфоузлы, пейеровы бляшки, лимфоциты перифе­рической крови).

Особенности иммунной системы.

  • генерализована по всему организму

  • лимфоциты в составе крови постоянно циркулируют по организму

  • клетки вырабатывают белки–антитела (иммуноглобулины) в ответ на проникно­вение антигенов (белки и полисахариды)

Центральная фигура иммунитета – лимфоциты. Они образуются в ККМ из стволовых клеток и поступают на дифференцировку либо в тимус (Т-лимфоциты), либо диффе­ренцируются прямо в костном мозге (В-лимфоциты).

Т-лимфоциты действуют на поступающие в организм чужеродные клетки и ткани, а также уничтожают собственные мутантные клетки (в организме происходит 106 му­таций в день). Значит, Т-лимфоциты отвечают за реализацию клеточного (трансплан­тационного) иммунитета. В-лимфоциты отвечают за гуморальный иммунитет, они вы­рабатывают антитела в ответ на проникновение антигенов в организм. Антителами яв­ляются иммуноглобулины: G, М, A, D, Е.

Иммунная система осуществляет специфическую защиту организма.

Однако в организме существует и система НЕ специфической защиты. Это кожа, сли­зистые оболочки, лизоцим слюны, фагоцитоз.

6. Структурные основы гомеостаза.

При этом имеют ввиду различные механизмы, которые обеспечивают сохранение постоянства структурной организации на всех уровнях организма (молекулярный, суб­клеточный, клеточный, тканевой, органный).

Структурная целостность организма обеспечивается физиологической и репаративной регенерацией.

Необходимо помнить, что в основе развития многих видов патологии лежат нару­шения структур организма – это первичное явление, а вторично – нарушение функции.

7. Адаптация. Роль нервной и эндокринной системы в ее обеспечении.

Если на организм действует какой-то фактор внешней среды, и организм сохраняет свою устойчивость, то говорят о том, что организм адаптировался к действию данного фактора.

Адаптация организма к тому или иному фактору среды формируется на основе гомеостатических механизмов. Причем при действии одного внешнего фактора включаются все гомеостатические механизмы.

Процесс адаптации не мгновенный, он происходит в течение определенного интервала времени и сопровождается определенной перестройкой организма.

Рассмотрим процесс адаптации на примере стресса.

фактор внешней среды —► мобилизация защитных сил организма —►

—►повышение резистентности организма

адаптация стадия истощения

Особую роль в адаптации организма к тому или иному внешнему фактору играет ЦНС и эндокринная система.

ЦНС (кора больших полушарий) воспринимает все раздражители (факторы), кото­рые действуют на организм, и вырабатывает управляющий сигнал. ЦНС посылает управляющий сигнал на различные системы организма (ССС, дых., пищ., выд.), но в первую очередь на эндокринные железы. Эндокринная система осуществляет кон­кретные реакции в организме, направленные на сохранение постоянства внутренней среды. Большое значение в адаптации организма имеет гипоталамо-гипофизарно-надпочечниковая система.

Гипоталамус выделяет особые вещества – релизинг-факторы, которые поступают в гипофиз. Гипофиз (передняя доля) вырабатывает АКТГ (адренокортикотропный), который воздействует на кору надпочечников и приводит к усиленному выбросу глюкокортикоидных гормонов.

Глюкокортикоидные гормоны воздействуют на различные звенья гомеостатических

механизмов (генетические, клеточные) и способствуют приспособлению организма к меняющимся условиям среды.

В адаптации большое значение имеет такой гормон гипофиза, как соматотропин (особенно в адаптации новорожденных).

Если на организм действует внешний фактор чрезвычайной силы (экстремальный), то может наступить истощение защитных сил организма, и организм в этих условиях не может сохранять постоянство внутренней среды. В этом случае говорят о том, что наступила стадия истощения (иначе это называют дистресс).

С биологической точки зрения, стресс – это очень полезная адаптивная реакция ор­ганизма на действие внешней среды. Но если человек длительное время испытывает дистресс, это приве­дёт к развитию заболевания.

8. Поведение как способ адаптации в среде обитания.

Организмы могут по–разному адаптироваться к меняющимся условиям среды. В не­которых случаях адаптируются путем изменения своего поведения.

Пример: сохранение температуры тела грызунами в условиях изменяющейся температуры окружающей среды. У грызунов очень несовершенна система терморегуляции. При высокой температуре окружаю­щей среды их движения замедляются, при низкой температуре окружающей среды их движения стано­вятся более активны.

9. Гомеостатические механизмы организма в разные возрастные периоды.

Эмбриональный период. В этот период организм относительно изолирован от ок­ружающей среды за счет организма матери. Гомеостатические механизмы несовер­шенны. Факторы внешней среды действуют, прежде всего, на организм матери, а через него на плод. Выделяют особые критические периоды, когда организм плода наиболее чувствителен и уязвим для факторов среды.

1) имплантация 2) гисто–и органогенез 3) плацентация 4) роды

Плацента обладает избирательной проницаемостью, поэтому JgМ, обеспечиваю­щий иммунитет против кишечных инфекций – не проходит через неё, и плод и ново­рожденный в первые дни жизни беззащитен перед кишечными инфекциями.

У новорождённого и в детском возрасте гомеостатические механизмы в целом не­совершенны. Наиболее стабильно функционируют гомеостатические механизмы в пе­риод зрелости, когда сформированы и функционируют все органы и системы.

При старении организма надежность функционирования гомеостатических механиз­мов падает, вместе с этим падает устойчивость организма к факторам внешней среды.

10. Проблема трансплантации органов и тканей.

Трансплантология – сравнительно молодая отрасль науки, насчитывает около 150 лет. Она сформировалась и развивалась в рамках пластической хирургии. В России рождение этой науки связано с именем Н. И. Пирогова.

В зависимости от видовой принадлежности донора и реципиента различают:

  1. Аутотрансплантация (аутогенная) – один и тот же организм является и донором, и реципиентом. Трансплантат называют аутотрансплантат.

  2. Гомо (алло) трансплантация (гомогенная). Донор и реципиент – организмы одно­го вида (от человека к человеку). Трансплантат называют гомотрансплантат.

  3. Гетеро, или ксенотрансплантация (ксеногенная). Донор и реципиент – организмы разных видов. Трансплантат называют гетеротрансплантат или ксеногенный трансплантат.

Типичный вариант пересадки органа или ткани – донор и реципиент генетически разнородные. Трансплантат – гомотрансплантат.

Редкий вариант – пересадка органа или ткани производится от одного монозиготного близнеца другому.

Экспериментальный вариант – осуществляется в пределах инбредных животных (чистые линии). Трансплантат называется – изотрансплантат или сингенный. Наиболее успешно протекает аутотрансплантация.

Технически в настоящее время хирурги могут пересаживать любой орган любому ор­ганизму, но после любой аллотрансплантации начинается отторжение трансплантанта.

В 1964г. П. Медавар доказал, что биологическая природа отторжения относится к ка­тегории иммунологических реакций.

При пересадке чужеродной ткани в организм поступают антигены, которые есть на всех клетках, их нередко называют трансплантационные антигены или антигены гис­тосовместимости. Организм реципиента осуществляет различные иммунные реакции, которые направлены на разрушение трансплантата, т.е. его отторжение.

Методы ослабления тканевой несовместимости.

1. подбор иммунологически совместимых пар. Для этого изучают антигенный со­став клеток донора и реципиента. И если они отличаются как можно меньшим числом антигенов, их используют для трансплантации. Изучают, прежде всего, систему АВО и систему антигенов на лейкоцитах. Эта система генов лейкоци­тарных антигенов, называется HLA (human lymphocyte antigens), и расположена она в 6 хромосоме (иногда в литературе их обозначают как главный комплекс гистосовместимости).

2. ослабление иммунологической активности реципиента. С этой целью вводят специальные вещества, которые подавляют иммунную систему реципиента. Эти вещества называют иммунодепрессанты.

  • 6-меркаптопурин – подавляет активность всех групп Т-лимфоцитов, а также всех пролиферирующих клеток.

  • циклоспорин А – циклический пептид из 11 аминокислот. Подавляет только Т-хелперы (есть препарат эффективнее циклоспорина А в 70 раз)

  • глюкокортикоиды – подавляют иммунологические реакции. Вместе с тем по­бочные действия: гипертония, сахарный диабет, злокачественные опухоли.

3. воздействие на трансплантат с целью ослабления его антигенной активности. Например, для пересадки печени можно использовать печень свиньи. Она подходит человеку по размерам и антигенному составу. Тем не менее, в зиготу, из которой будет получена свинья–донор, подсаживают человеческие гены, чтобы человече­ский организм скорее признал своей пересаженную свиную печень.

Пересадка печени – наиболее сложная и наиболее редко выполняемая процедура. Для человека оптимальна пересадка печени бабуина, геном которого на 90% совпадает с геном человека.

11. Биоритмы и их значение для человека.

Хронобиология – наука, изучающая ритмические процессы в биологических системах.

Биологические ритмы или биоритмы – это более или менее регулярные изменения характера и интенсивности биологических процессов. Способность к таким изменени­ям жизнедеятельности передается по наследству и обнаружена практически у всех жи­вых организмов. Их можно наблюдать в отдельных клетках, тканях и органах, в целых организмах и в популяциях.

Биологические ритмы человеческого организма сформировались путём эволюцион­ных адаптаций к ритмическим колебаниям факторов среды (день – ночь, прилив –отлив, сезоны).

Механизмы, лежащие в основе биоритмов организмов – биологические часы.

Где в организме человека находятся биологические часы)?

  • на уровне клетки: связь с распадом и синтезом веществ

  • на уровне организма: связь с ЦНС и эндокринной системой

Наиболее изучены суточные (циркадные) ритмы. Интервал – 24 часа.

  • максимальное выделение в кровь соматотропина и выделение поджелудочного сока в 12перстную кишку происходит в предутренние часы

  • максимальное выделение в кровь половых гормонов происходит в 8 утра

  • механизмы самоочищения организма активизируются в интервале 4-7 часов

  • ощущение боли более мягкое в 16-18 часов

  • анальгетики лучше принимать утром

  • оптимальное время принятия алкоголя 18-20 часов

С учетом циркадного ритма людей разделяют на «сов», «жаворонков» и «голубей». Так как их работоспособность варьирует в течение суток, то многие исследователи ре­комендуют подбирать работу с учетом этих ритмов. Если человек «голубь», то пик ра­ботоспособности приходится на три часа дня. Если «жаворонок», то время наиболь­шей активности организма падает на полдень. «Совам» рекомендуется самую напря­женную работу выполнять в 5-6 часов вечера. Самую напряженную работу легче вы­полнять, когда главнейшие системы организма функционируют с максимальной ин­тенсивностью (у человека выявлено около 500 функций и процессов, подчиняющихся циркадным ритмам).

Сезонные циклы: у больных псориазом заболевание обостряется зимой, а как ле­том псориатрические бляшки либо уменьшаются в размерах, либо вообще исчезают.

Насильственная смена биоритмов ведёт к потере адаптации к условиям внешней среды.

Пример. При переводе часов на летнее время сильно страдают дети. И дело не только в том, что они становятся вялыми, раздражительными и сонливыми. Опаснее то, что увеличивается вероятность пробуждения ребенка в фазе быстрого сна.

Если будить мышей в фазе быстрого сна, то через 20 дней эксперимента они умира­ют, хотя продолжительность сна была достаточной. Если такой эксперимент провести со взрослыми людьми, то у них наступают психические расстройства.

ЛЕКЦИЯ 18 Биологический вид. Популяция. Процесс видообразования.

  1. Политипическая концепция биологического вида. Вид как генетически изолированная система.

Согласно политипической концепции биологический вид имеет критерии:

1. Генетический критерий. Каждый вид характеризуется спецификой генофонда. Генофонд - совокупность генов организмов вида или совокупность генотипов орга­низмов вида. Специфика означает, что в генофонде вида имеется определенный со­став генов и определенная частота генов. Этот критерий включает и кариотип вида. Виды - это генетически изолированные системы, так как обмен генов между разны­ми видами невозможен, поскольку имеет место репродуктивная изоляция, заклю­чающаяся в не скрещиваемости особей данного вида с представителями других ви­дов. Если же происходит межвидовое скрещивание, то потомство, как правило, не­жизнеспособно или бесплодно. Также выделяют генетическую устойчивость в при­родных условиях, приводящую к независимости эволюционной судьбы.

2. Морфологический критерий включает особенности внешнего и внутреннего строения организмов вида.

3. Физиологический критерий рассматривает сходство процессов жизнедеятельно­сти у особей данного вида и, прежде всего сходство в размножении. Биохимический критерий учитывает особенности макромолекул белков у особей вида.

4. Географический критерий определяется ареалом вида.

5. Экологический критерий. Каждый вид занимает в природе определенную эколо­гическую нишу, то есть свое место в цепях питания в структуре биогеоценоза.

Вид - совокупность особей представляющих целостную систему, имеющую гене­тические, морфологические, физиологические, биохимические, географические и экологические критерии, свободно скрещивающихся и дающих плодовитое потом­ство.

  1. Популяционная структура вида. Популяция: экологические и генетические характеристики.

Наименьшей единицей вида является популяция. Популяция – это совокупность особей одного вида длительно населяющая определенную часть ареала вида, относитель­но изолированная от подобных групп и способная к эволюции.

Экологически популяции характеризуется:

  • ареалом (занимаемой территорией)

  • природными условиями

  • численностью особей

  • возрастным и половым составом

  • степенью подвижности особей.

Численность особей в популяции зависит от следующих факторов:

  • деятельности человека

  • экологической обстановки

  • возраста, при котором достигается половая зрелость

  • интенсивности размножения

  • продолжительности жизни особей

Генетически популяция характеризуется генофондом популяции (аллелофондом). Он представлен совокупностью аллелей, образующих генотипы организмов данной популяции. Генофонд популяции отличается:

1. генетическим разнообразием особей (мутации и комбинации)

2. генетическим единством (благодаря панмиксии источником генов для геноти­пов последующих поколений является весь генофонд популяции).

3. Механизмы формирования генофонда популяции. Правило Харди-Вайнберга.

  • из поколения в поколение частота генов и генотипов в популяции не изменяется,

если на популяцию не действуют мутации, миграции, естественный отбор, то есть сумма частот генов одного аллеля в данной популяции есть величина по­стоянная (p+q- 1 или 100%).

  • сумма частот генотипов по одному аллелю в данной популяции есть величина

постоянная, а распределение их соответствует коэффициентам бинома Ньютона второй степени + 2pq+ q= 1 или 100%).

Допустим, в популяции присутствуют гены: “А” с частотой “р”, и “а” с частотой q”.

Тогда: ♂ (p+q)х ♀ (p+q)= (p+q)22 + 2pq+ q2= 1 = 100%

Исходя из этого, можно рассчитать:

Р – частоту доминантных гомозигот в популяции (АА).

2pqчастоту гетерозигот в популяции (Аа).

q 2 частоту рецессивных гомозигот в популяции (аа). p+q=1

Условие проявления закона Харди-Вайнберга:

  • популяция должна быть достаточно большой.

  • должно быть свободное скрещивание особей.

  • должна быть равная плодовитость гомозигот и гетерозигот.

  • не должны действовать мутации, миграции и естественный отбор.

Популяции, которые отвечают этим условиям, называются идеальными или мен-

делевскими. В природе эти популяции не встречаются.

4. Популяция – элементарная единица эволюции. Изменение генофонда по­пуляции как первичное эволюционное явление.

Процесс видообразования начинается с изменения генофонда популяции, то есть с изменения частоты генов. Генофонд популяции изменяется под действием элемен­тарных эволюционных факторов: мутационного процесса, популяционных волн, изоляции и

естественного отбора.

а) мутационный процесс и генетическая комбинаторика

Изменения наследственного материала половых клеток в виде генных, хромо­сомных и геномных мутаций происходит постоянно. Особое место принадлежит генным мутациям. Они приводят к возникновению серий аллелей и, таким образом, к разнообразию содержания биологической информации. За счет мутантных аллелей формируется резерв наследственной изменчивости. Это создает условия для варьи­рования аллельного состава генотипов организмов в последующих поколениях пу­тем комбинативной изменчивости. Благодаря мутационному процессу поддержива­ется высокий уровень наследственного разнообразия природных популяций. Совокупность аллелей, возникающих в результате мутаций, составляет исходный эле­ментарный эволюционный материал.

Вредные мутации возникают чаще, а полезные реже. Тем не менее, абсолютное количество полезных мутаций в пересчете на поколение или период существования вида может быть большим. Например, предположим, что за поколение в гено­фонде вида произойдет 106 мутаций. Допустим, что одна полезная мутация прихо­дится на 1 млн. вредных мутаций. Тогда среди 106 мутаций за одно поколение 104 будет полезной.

Мутационный процесс, играя роль элементарного эволюционного фактора, про­исходит постоянно на протяжении всего периода существования жизни, а отдельные мутации возникают многократно у разных организмов. Генофонды популяций ис­пытывают непрерывное давление мутационного процесса. Это обеспечивает накоп­ление мутаций, несмотря на высокую вероятность потери в ряду поколений единич­ной мутации.

б) популяционные волны

Популяционные волны – колебания численности особей в природных популяци­ях.

При подъеме популяционной волны численность особей увеличивается, при этом усиливается миграция особей из одной популяции в другую. Две популяции могут сливаться в одну, в результате возникает популяция с новым генофондом.

При спаде популяционной волны численность особей уменьшается, при этом од­ни гены и генотипы исчезают полностью, другие остаются независимо от их биоло­гической ценности. При новом нарастании численности они повысят свою концен­трацию, что также изменит генофонд популяции.

в) изоляция

Изоляция – это ограничение свободы скрещивания (панмиксии) между популяция­ми одного вида.

Снижая уровень панмиксии, изоляция приводит к увеличению доли близкородст­венных скрещиваний, а это увеличивает гомозиготизацию популяции. Изоляция яв­ляется необходимым условием сохранения, закрепления и распространения в попу­ляциях генотипов повышенной жизнеспособности.

Изоляция бывает: географическая и биологическая

географическая изоляция связана с особенностями территории или с радиусами индивидуальной активности организмов.

Биологическая изоляция бывает:

  • морфологической

  • физиологической (особенности процессов жизнедеятельности),

  • генетической (несовместимость гамет).

Значение изоляции: она закрепляет все то, что возникает под действием мутаци­онного процесса.

г) естественный отбор.

это сложный биологический процесс исключения из размножения генотипов с малой приспособительной ценностью, и сохранения благоприятных генных комби­наций разного масштаба. Таким образом, естественный отбор преобразует картину генотипической изменчивости, складывающуюся первоначально под действием случайных факторов, в биологически целесообразном направлении.

Движущий отбор (направленный), способствующий выживанию и размножению особей происходит при сдвиге значения признака в сторону его усиления или ослаб­ления.

Стабилизирующий отбор способствует выживанию и размножению особей со средним значением признака.

Разрывающий отбор (дизруптивный) способствует выживанию и размножению особей с разными фенотипами, с равной приспособленностью, в разных условиях среды.

5. Взаимодействие элементарных эволюционных факторов..

Мутационный процесс и генетическая комбинаторика обеспечивают высокий уровень наследственного разнообразия природных популяций. Популяционные вол­ны также способствуют увеличению генетического разнообразия.

Изоляция закрепляет все то, что возникает под действием мутационного процес­са, а естественный отбор исключает из размножения генотипы с малой приспособи­тельной ценностью, и сохраняет благоприятные генные комбинации разного мас­штаба.

6. Генетико-автоматические процессы в популяции (дрейф генов).

Дрейф генов это изменение частоты аллелей в популяции из-за случайных при­чин, не обусловленных действием естественного отбора. Значение дрейфа генов: он приводит к изменению частоты аллелей в генофонде популяции. Аллели могут уда­ляться или закрепляться в генофонде, независимо от того, имеют они адаптивную ценность или нет. Он существенно влияет на генофонд малочисленных популяций.

7. Генетический полиморфизм. Адаптивный и балансированный полиморфизм.

Популяции состоят из сходных по фенотипу особей, но генотипы у них разные. Генетический полиморфизм - это существование в популяции более двух генетиче­ски разных форм. Причины полиморфизма: мутации и комбинативная изменчи­вость. Устанавливается генетический полиморфизм под действием естественного отбора. Генетический полиморфизм бывает Адаптационным и балансированным.

  • адаптационный полиморфизм возникает, когда естественный отбор действует на 2 или больше генетически разные формы в разных условиях среды, которые периодически возникают. То есть отбор благоприятствует разным генотипам. Так, в популяциях двухточечных божьих коровок Adalia bipuncata при уходе на зимовку преобладают черные жуки, а весной - красные. Это происходит потому, что красные формы лучше переносят холод, а черные интенсивнее размножаются в летний период.

  • балансированный полиморфизм возникает, если естественный отбор больше благоприятствует гетерозиготам, чем гомозиготам. Явление селективного пре­имущества гетерозигот называют сверхдоминантностью.

Значение генетического полиморфизма: он увеличивает резерв наследственной из­менчивости и обеспечивает лучшую приспосабливаемость к условиям среды. Он да­ет возможность популяции изменяться.

8. Генетический груз и его биологическая сущность.

Генетический груз популяции:

  • сегрегационный груз (это все рецессивные гомозиготы со сниженной

жизне­способностью)

  • мутационный груз (это все вредные мутации).

9. Адаптивный характер эволюционного процесса.

В ходе эволюционного процесса происходит выживание наиболее приспособлен­ных к условиям среды видов организмов. При этом если механизмы адаптации не позволяют организмам приспособиться к условиям среды, то они погибают, не ос­тавляя потомства.

10. Видообразование (микроэволюция). Пути видообразования.

Микроэволюция это процесс видообразования. Он происходит на уровне популя­ции, поэтому популяция - наименьшая единица эволюции. Начинается видообразо­вание с изменения генофонда популяции, т.е. с изменения частоты генов в популя­ции. Видообразование может быть постепенным и мгновенным.

Постепенное видообразование связано с постепенным расхождением популяции и превращением её в новый вид. К нему относятся:

  • географическое видообразование, связанное с географической изоляцией популя­ций и превращением их в новые географические виды с не перекрывающимися ареалами. Иначе - аллопатрическое видообразование.

  • экологическое видообразование, связанное с экологической изоляцией, приводя­щей к образованию новых экологических видов с перекрывающимися ареалами.

Мгновенное (симпатрическое) видообразование. Связано с хромосомными мута­циями, которые приносят изменения, благоприятные в данных условиях среды. Этот путь относительно быстрый и дает виды по морфофизиологическим показателям, близкие к исходному виду.

УРОК 19 Популяционная структура человечества.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]