Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_1-30.doc
Скачиваний:
161
Добавлен:
29.02.2016
Размер:
4.79 Mб
Скачать

1) История развития электроники

Электроника — наука о взаимодействии заряженных частиц с электромагнитными полями и методах создания электронных приборов и устройств, работа которых основана на прохождении электрического тока в твёрдом теле, вакууме и газах.

1 этап. К первому этапу относится изобретение в 1874 году русским инженером Ладыгиным лампы накаливания.

Открытие в 1874 году немецким ученым Брауном выпрямительного эффекта в контакте металл-полупроводник. Попов изобрел радио 7 мая 1895 г. чувствительности.

2этап. Второй этап развития электроники начался с 1904 г. когда английский ученый Джон Флеминг сконструировал электровакуумный диод.

Основными частями диода являются два электрода находящиеся в вакууме. Металлический анод (А) и металлический катод (К) нагреваемый электрическим током до температуры при которой возникает термоэлектронная эмиссия.

3 этап. Третий период развития электроники — это период создания и внедрения дискретных полупроводниковых приборов.

Первый полевой транзистор был запатентован в США в 1926/30 гг., 1928/32 гг. и 1928/33 гг. Лилиенфельд — автор этих патентов.

23 декабря 1947 г. сотрудниками лаборатории «Белл Телефон» — Бардиным и Браттейном, под руководством Шокли продемонстрирован работающий точечный биполярный транзистор.

4 этап. В 1960 году Роберт Нойс из фирмы Fairchild предложил и запатентовал идею монолитной интегральной схемы (Патент США 2981877) и применив планарную технологию изготовил первые кремниевые монолитные интегральные схемы.

Первый микропроцессор «Интел-4004», 1971 г.

2)Электронно-дырочный p-n переход и его свойства

Ввиду неравномерной концентрации на границе раздела p и n полупроводника возникает диффузионный ток, за счёт которого электроны из n-области переходят в p-область, а на их месте остаются некомпенсированные заряды положительных ионов донорной примеси.

Электроны, приходящие в p-область, рекомбинируют с дырками, и возникают некомпенсированные заряды отрицательных ионов акцепторной примеси. Ширина p-n перехода – десятые доли микрона. На границе раздела возникает внутреннее электрическое поле p-n перехода, которое будет тормозящим для основных носителей заряда и будет их отбрасывать от границы раздела.

Свойство односторонней проводимости p-n перехода нетрудно рассмотреть на вольтамперной характеристике.

Вольтамперной характеристикой (ВАХ) называется графически выраженная

зависимость величины протекающего через p-n переход тока от величины приложенного напряжения I=f(U).

Будем считать прямое напряжение положительным, обратное –отрицательным.

Температурное свойство p-n перехода показывает, как изменяется работа p-n перехода при изменении температуры. На p-n переход в значительной степени влияет нагрев, в очень малой степени –охлаждение. При увеличении температуры увеличивается генерация носителей заряда, что приводит к увеличению как прямого, так и обратного тока.

Частотные свойства p-n перехода показывают, как работает p-n переход при подаче на него переменного напряжения высокой частоты. Частотные свойства p-n перехода определяются двумя видами ёмкости перехода:

- ёмкость, обусловленная неподвижными зарядами ионов донорной

и акцепторной примеси. Она называется зарядной, или барьерной ёмкостью; - диффузионная ёмкость, обусловленная диффузией подвижных носителей заряда через p-n переход при прямом включении.

При увеличении обратного напряжения энергия электрического поля становится достаточной для генерации носителей заряда. Это приводит к сильному увеличению обратного тока. Явление сильного увеличения обратного тока при определённом обратном напряжении называется электрическим пробоем p-n перехода

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]