Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lab-ТЭЦ.doc
Скачиваний:
747
Добавлен:
18.02.2016
Размер:
2.7 Mб
Скачать

«Исследование последовательного резонансного контура»

Цель:изучить основные свойства, временные и частотные характеристики последовательного колебательного контура, суть понятия резонанса напряжений и условия его возникновения.

Краткие теоретические сведения

Контур состоит из последовательно соединенных элементов R,L, С. Схема последовательного резонансного контура представлена на рис. 20.

Рис. 20 – Схема последовательного резонансного контура

Комплексная функция входного сопротивления

Zвх = R + jωL + 1/С = R + jL – 1/(ωC)].

(15)

При изменении частоты от 0 до ∞ реактивная составляющая сопротивления контура изменяется от –∞ до +∞. На частоте ωореактивное сопротивление контура равно нулю:

ωоL – 1/(ωоC) = 0

Частота

ωо = 1 / √LC

(16)

называется резонансной частотой.На этой частоте индуктивное сопротивление контура компенсирует емкостное сопротивление, поэтому полное комплексное сопротивление (15) становится равным активной составляющейR. Реактивное сопротивление контура

X вх = ωL – 1/(ωC) = ρ (ω/ωo – ωo/ω),где

ρ = √ LC = ωoL= 1/( ωoC).

(17)

Величина ρ называется характеристическим сопротивлением контура, которое равно реактивному сопротивлению индуктивности или емкости контура на резонансной частоте.

Подставив (17) в (15) получим

Zвх = R (1 + ), где ξ =Q(ω/ωo – ωo/ω),

Q = ρ / R = ωоL / R = 1/( ωоRC).

(18)

Величина ξ называется обобщенной расстройкой, а величинаQ–добротностьюрезонансного контура, равной отношению характеристического сопротивления контура к активному сопротивлению.

На резонансной частоте полное сопротивление контура равно активному, а реактивное – нулю. Это объясняется тем, что на резонансной частоте напряжения на LиCравны по значению и противоположны по фазе, поэтому взаимно компенсируются. Наибольший ток в контуре наблюдается на резонансной частоте.

Комплексная передаточная функция напряжения

Кu () = ŮC / Ů1 = [1/(jωC)]/Zвх = –j Q ωо /[ω(1 + )].

(19)

Соответственно, амплитудно-частотная и фазо-частотная характеристики запишутся следующим образом:

Кu (ω) = Q ωо /ω √(1 + ξ2),

φ(ω) = - π/2 – arctg ξ .

(20)

В радиотехнических устройствах обычно используют контуры с большой добротностью Q >> 1. В таких контурах частотная характеристика представляет интерес только при небольших расстройках ∆ω = ω – ωо, т.е. когда ∆ω / ω << 1, а ωо≈ ω.При этих предположениях обобщенную расстройку и амплитудно-частотную характеристику можно представить как

ξ ≈ Q (2∆ω / ωо),

Кu (ω) = Q / √(1 + (Q 2∆ω / ωо )2.

(21)

На резонансной частоте ω = ωо максимум амплитудно-частотной характеристики равен добротности контура (амплитуда напряжения на конденсаторе вQраз больше амплитуды входного напряжения). Поэтому резонанс в последовательном контуре называют такжерезонансом напряжений.Полоса пропускания контураопределяется частотамиω1 иω2 между которыми

Кu (ω) = Q / √ 2.

Из (21) можно определить полосу пропускания, которая равна

П = ωо / Q .

(22)

Полоса пропускания контура прямо пропорциональна резонансной частоте и обратно пропорциональна добротности.

Годограф комплексной передаточной функции контура представлен на рис. 21. Так как выходной ток совпадает со входным, передаточная функция тока последовательного резонансного контура Ki = 1.

Рис. 21 – Годограф комплексной передаточной функции контура

Задание. Собрать схему, представленную на рис. 20. Изменяя значения R, С и L, снять амплитудно-частотные и фазо-частотные характеристики последовательного контура. Изучить влияние параметров контура на его характеристики – резонансную частоту, добротность, полосу частот.

Порядок выполнения (1 способ).

1) Подготовка схемы измерения. Выставить значения сопротивления, индуктивности и емкости, указанные на рис. 20. В меню Analysis выбрать режим AC Frecuensy режим анализа амплитудно-частотных и фазо-частотных характеристик. В появившемся окне установить указанные параметры моделирования (рис. 22).

В данном примере частота входного сигнала будет меняться от 1 Гц до 20 кГц. Амплитуда сигнала в точке 3 схемы (Nodes for analysis) и сдвиг фаз сигналов будут откладываться по вертикальной и горизонтальной осям в линейном масштабе (Linear).

2) Измерения. Нажать кнопку Simulate (рис. 22). На экране появится окно, в котором будут представлены амплитудно-частотная (верхняя) и фазо-частотная (нижняя) характеристики для заданных параметров последовательного колебательного контура (рис. 23). С помощью визирных линий (методика подробно описана в работе № 4) оценить резонансную частоту. Для более точных измерений вновь в меню Analysis выбрать режим AC Frecuensy. В появившемся окне (рис. 22) установить FSTART=4 кГц, FSTOP=6 кГц. Нажать кнопку Simulate. В появившемся окне (рис. 24) будут представлены характеристики контура в виде, более удобном для измерений.

Используя описанную методику, измерить и занести в таблицу 12 параметры амплитудно-частотной и фазо-частотной характеристик последовательного контура для следующих значений элементов:

Рис. 22 – Настройка параметров измерений

Рис. 23 – Характеристики последовательного колебательного контура

А). R=0,1 Ом, С=1 мкФ и L=1, 2 …..10 мГн;

Б). R=0,1 Ом, L= 1 мГн и С=1, 2……10 мкФ;

В).L= 1 мГн, С=1 мкФ и R =1, 2 …….10 Ом.

Табл.12

f1,Гц

f2,Гц

fn,Гц

ωo

Q

R=…..

L=…..

C=…..

Кu

φ,град

Рис. 24 – Измерение параметров последовательного колебательного контура

Порядок выполнения (2 способ).

1) Подготовка схемы измерения. Собрать схему и выставить значения сопротивления, индуктивности и емкости, указанные на рис. 25.

Дважды щелкнуть левой клавишей мыши по изображению плоттера. На экране появится изображение передней панели плоттера (рис. 26). На передней панели выбрать линейный масштаб по вертикальной и горизонтальной оси (Lin) и измеряемую величину – коэффициент передачи по напряжению (Magnitude). В левом окне выбираются минимальное (I) и максимальное (F) значения коэффициента передачи, в правом – минимальную (I) и максимальную (F) частоты исследуемого диапазона. Это наиболее трудная задача. Предварительно целесообразно оценить резонансную частоту и добротность контура по приведенным выше формулам. В приведенном примере (рис. 26) пределы измерения коэффициента передачи 0-50, диапазон частот – 4-6 кГц.

2) Измерения. После установки указанных параметров нажать кнопку

.

Рис. 25 – Схема измерения с помощью плоттера (измерителя АЧХ и ФЧХ)

Рис. 26 – Передняя панель плоттера (измерение АЧХ)

На экране плоттера появится изображение амплитудно-частотной характеристики. Передвигая визирную линию (удерживая нажатой левую кнопку мыши) или с помощью кнопок

,

измерить параметры характеристики (значение коэффициента передачи и соответствующей ему частоты можно прочитать в нижнем окне на передней панели плоттера).

Для измерения параметров фазо-частотной характеристики контура необходимо нажать кнопку Phase (рис. 27).

Рис. 27 –Передняя панель плоттера (измерение ФЧХ)

Используя описанную методику, измерить и занести в таблицу 12 параметры амплитудно-частотной и фазо-частотной характеристик последовательного контура для следующих значений элементов:

А). R=0,1 Ом, С=1 мкФ и L=1, 2 …..10 мГн;

Б). R=0,1 Ом, L= 1 мГн и С=1, 2……10 мкФ;

В).L= 1 мГн, С=1 мкФ и R =1, 2 …….10 Ом.

По результатам измерений построить амплитудно-частотные и фазо-частотные характеристики, а также годографы комплексной передаточной функции последовательного резонансного контура.

Построить зависимости характеристик контура – резонансной частоты, добротности, полосы частот – от значений R, L и C.

Контрольные вопросы:

  1. Как определяется ток и напряжения в цепи синусоидального тока с последовательным соединением резистора, индуктивности и ёмкости? Запишите закон Ома в комплексной форме.

  2. Что такое треугольник сопротивлений? Как его построить?

  3. Какую цепь называют последовательным колебательным контуром?

  4. При каком условии в последовательном колебательном контуре наступает резонанс? Почему резонанс в такой цепи называют резонансом напряжений?

  5. Как определяется резонансная частота?

  6. Что называют характеристическим сопротивлением контура и добротностью контура?

  7. Изменением каких величин в последовательном колебательном контуре можно достичь резонанса?

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА № 7

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]