Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛекцииАСВТ2.pdf
Скачиваний:
68
Добавлен:
09.06.2015
Размер:
11.86 Mб
Скачать

109

Под кросс-шинами подразумеваются обычно параллельные интерфейсы, объединяющие внутренние подсистемы устройства, подключенного к кабелю 1394. Сеть может состоять из множества шин, соединенных мостами — специальными устройствами, осуществляющими передачу пакетов между шинами, фильтрацию трафика, а для соединения разнородных шин еще и необходимые преобразования интерфейсов. Интерфейсная карта шины FireWire для PC представляет собой мост PCI — 1394. Мостами являются также соединения кабельной шины 1394 с кросс-шинами периферийных устройств. Мосты могут соединять и кабельные шины, что расширяет топологические возможности соединения устройств.

2.2.2. Протокол IEEE 1394

Протокол 1394 реализуется на трех уровнях (рис. 2.7).

Уровень транзакций (Transaction Layer) преобразует пакеты в данные, предоставляемые приложениям, и наоборот. Он реализует протокол запросов-ответов, соответствующий стандарту ISO/IEC 13213:1994 (ANSI/IEEE 1212, редакции 1994 г.) архитектуры регистров управления и состояния CSR (Control and Status Register) для микрокомпьютерных шин (чтение, запись, блокировка). Это облегчает связь шины 1394 со стандартными параллельными шинами.

Уровень связи (Link Layer) из данных физического уровня формирует пакеты и выполняет обратные преобразования. Он обеспечивает обмен узлов датаграммами с подтверждениями. Уровень отвечает за передачу пакетов и управление изохронными передачами.

Физический уровень (Physical Layer) вырабатывает и принимает сигналы шины. Он обеспечивает инициализацию и арбитраж, предполагая, что в любой момент времени работает только один передатчик. Уровень передает потоки данных и уровни сигналов последовательной шины вышестоящему уровню. Между этими уровнями возможна гальваническая развязка, при которой микросхемы физического уровня питаются от шины. Гальваническая развязка необходима для предотвращения паразитных контуров общего провода, которые могут появиться через провода

защитного заземления блоков питания.

Аппаратная часть FireWire обычно состоит из двух специализированных микросхем — трансиверов физического уровня PHY Transceiver и моста связи с шиной LINK Chip. Связь между ними возможна, например, по интерфейсу IBM-Apple LINK-PHY. Микросхемы уровня связи выполняют все функции своего уровня и часть функций уровня транзакций; остальная часть уровня транзакций выполняется программно.

Для передачи асинхронных сообщений используется 64-битная адресация регистров устройств 1394. В адресе выделяется 16 бит для адресации узлов сети: 6-битное поле идентификатора узла допускает до 63 устройств в каждой шине; 10-битное поле идентификатора шины допускает использование в системе до 1023 шин разного типа (включая внутренние), соединенных мостами. Протокол шины позволяет обращаться к памяти (регистрам) устройств в режиме DMA. В адресном пространстве каждого устройства имеются конфигурационные регистры, в которых содержится вся информация, необходимая для взаимодействия с ним других устройств. Данные передаются пакетами, в начале каждого пакета передаются биты состояния арбитража. Устройство может передавать данные только после успешного прохождения арбитража. Имеются два основных типа передач данных — изохронный, ради которого и строилась шина, и асинхронный. Изохронные передачи обеспечивают гарантированную полосу пропускания и время задержки, асинхронные передачи обеспечивают гарантированную доставку.

Асинхронные сообщения передаются между двумя устройствами. Инициатор посылает запрос требуемому устройству, на который оно сразу (через короткий интервал зазора, в котором шина находится в покое) отвечает подтверждением приема, положительным (АСК) или отрицательным (NACK), если обнаружена ошибка данных. Содержательный ответ на запрос (если требуется) будет передан обратно аналогичным способом (получатель должен послать подтверждение). Если подтверждение АСК не получено, передачи будут повторяться несколько раз до достижения успеха или фиксации ошибки.

110

Рис. 2.7. Трехуровневая структура FireWire

Изохронные передачи ведутся широковещательно. В сети может быть организовано до 64 изохронных каналов, и каждый пакет изохронной передачи, кроме собственно данных, несет номер канала. Целостность данных контролируется CRC-кодом. Изохронные передачи всех каналов «слышат» все устройства шины, но из всех пакетов принимают только данные интересующих их каналов. Устройство-источник изохронных данных (камера, приемник, проигрыватель) на этапе конфигурирования получает номер и параметры выделенного ему канала.

Шина поддерживает динамическое реконфигурирование — возможность «горячего» подключения и отключения устройств. Когда устройство включается в сеть, оно широковещательно передает короткий асинхронный пакет самоидентификации. Все уже подключенные устройства, приняв такой пакет, фиксируют появление новичка и выполняют процедуру сброса шины. По сбросу производится определение структуры шины, каждому узлу назначается физический адрес и производится арбитраж мастера циклов, диспетчера изохронных ресурсов и контроллера шины (см. ниже). Через секунду после сброса все ресурсы становятся доступными для последующего использования, и каждое устройство имеет полное представление обо всех подключенных устройствах и их возможностях. Отключение устройства от шины также обнаруживается всеми устройствами. Благодаря наличию линий питания интерфейсная часть устройства может оставаться подключенной к шине даже при отключении питания функциональной части устройства.

Мастер циклов — устройство, посылающее каждые 125 мкс короткие широковещательные пакеты начала циклов. В каждом таком пакете мастер циклов передает значение 32-битного счетчика времени, инкрементируемого с частотой 24,576 МГц, для каждого узла, поддерживающего изохронный обмен. В каждом цикле сначала передается по одному пакету каждого активного изохронного канала, затем на некоторое время зазора шина находится в состоянии покоя. После этого зазора начинается часть цикла, отводящаяся для передачи асинхронных пакетов. Каждое устройство, нуждающееся в асинхронной передаче, в этой части цикла может передать по одному пакету. Устройство, не имеющее пакета для передачи, шину и не занимает. После того как все нуждающиеся устройства передадут по одному пакету, в оставшееся время до конца цикла устройства могут передать и дополнительные пакеты.

Диспетчер изохронных ресурсов — устройство, ведающее распределением номеров каналов и полосы шины для изохронных передач. Диспетчер требуется, когда на шине появляется хоть одно устройство, способное к изохронной передаче. Диспетчер выбирается посредством арбитража из числа

111

устройств, поддерживающих изохронный обмен. После сброса устройства, нуждающиеся в изохронной передаче, запрашивают требуемую полосу. Полоса измеряется в специальных единицах распределения, число которых в 125-микросекундном цикле составляет 6144. Единица занимает около 20 не, что соответствует времени передачи одного квадлета (quadlet, 32-битное слово) на частоте 1600 Мбит/с. Такой способ измерения полосы учитывает возможность совместной работы устройств с разными скоростями — в одном цикле соседние пакеты могут передаваться на разных скоростях. Как минимум 25 мкс цикла резервируется под асинхронный трафик, поэтому суммарная распределяемая полоса изохронного трафика составляет 4915 единиц. Для цифрового видео, например, требуется полоса 30 Мбит/с (25 Мбит/с на видеоданные и 3-4 Мбит/с на аудиоданные, синхронизацию и заголовки пакетов). В S100 устройства цифрового видео запрашивают около 1800 единиц, в S200 — около 900. Если требуемая полоса недоступна, диспетчер откажет устройству и не выделит ему номер канала. Устройство, не получившее канал, будет периодически повторять запрос. Когда изохронный обмен становится ненужным узлу, он должен освободить свою полосу и номер канала, чтобы этими ресурсами смогли воспользоваться другие устройства. Обмен управляющей информацией устройств с диспетчером производится асинхронными сообщениями.

Контроллер шины (Bus Master) — необязательный элемент сети 1394, который осуществляет управление устройствами. Им может являться компьютер, редактирующее устройство цифровой записи или специальный интеллектуальный пульт управления. Контроллер шины, реализующий карты топологии и скоростей (Topology_Map и Speed_Map), допускает использование нескольких частот в одной шине, в соответствии с возможностями конкретной пары устройств, участвующих в обмене. Иначе при подключении устройств, рассчитанных на разные скорости, все передачи будут происходить на скорости, доступной для всех активных устройств.

2.2.3.Устройства и адаптеры 1394

ВPC-совместимом компьютере (в отличие от Macintosh) интерфейс 1394 пока не так распространен, как ставшая уже обязательной шина USB. Адаптеры FireWire чаще всего встречаются в виде карт расширения, но они уже встраиваются в некоторые модели системных плат. Адаптер 1394 для PC является мостом PCI — 1394, поскольку только шина PCI способна пропустить максимальный поток шины FireWire. Микросхемы для FireWire выпускает ряд фирм. Поначалу в основном использовались пары микросхем: LINK chip (микросхема уровня связи) и PHY chip (кристалл физического уровня). Это было связано со сложностью производства высокоскоростных микросхем физического уровня (на уровне связи S400 достигли быстро, а физический уровень на некоторое время «застрял» на S100 и S200). Модернизация такого адаптера сводилась лишь к последующей замене одного компонента. Сейчас применяют и однокристальные решения. Например, микросхема VIA Fire II (VT6306) представляет собой трехпортовый адаптер S400 для шины PCI, поддерживающий и шину Card Bus (для мобильных компьютеров).

Интерфейс 1394 становится общепринятым для современной цифровой бытовой аудио-, видео- и фототехники, которые используют эту шину и без участия компьютера. Кроме цифровых устройств, имеющих встроенные адаптеры 1394, к шине FireWire возможно подключение и традиционных аналоговых и цифровых устройств (плееры, камеры, мониторы) через адаптерыпреобразователи интерфейсов и сигналов.

С интерфейсом 1394 выпускаются и устройства хранения данных — приводы CD и DVD, AV-диски (винчестеры, оптимизированные для записи и чтения мультимедийных данных). Выпускаются и преобразователи интерфейсов 1394-IDE, оформленные в виде корпусов для стандартных IDE-устройств форматов 5" или 3,5". В эти корпуса можно установить обычные винчестеры, приводы CD и DVD (включая и рекордеры), получая переносные устройства хранения данных. Для ОС и приложений устройства хранения выглядят как SCSI-устройства соответствующих классов. Это обеспечивается протоколом SBP-2 (Serial Bus Protocol), инкапсулирующим пакеты SCSI-3 в пакеты 1394.

2.2.4.Использование 1394

Принципиальным преимуществом шины 1394 является отсутствие необходимости в контроллере. Любое передающее устройство может получить полосу изохронного трафика и начинать

112

передачу по сигналу автономного или дистанционного управления — приемник «услышит» эту информацию. При наличии контроллера соответствующее ПО может управлять работой устройств, реализуя, например, цифровую студию нелинейного видеомонтажа или снабжая требуемыми мультимедийными данными всех заинтересованных потребителей информации. Для шины 1394 наиболее привлекательна возможность соединения устройств бытовой электроники (имеется в виду пока что не «наш», а «их» быт) в «домашнюю сеть», причем как с использованием PC, так и без. При этом стандартные однотипные кабели и разъемы 1394 заменяют множество разнородных соединений устройств бытовой электроники с PC. Разнотипные цифровые сигналы (сжатые видеосигналы, цифровые аудиосигналы, команды MIDI и управления устройствами, данные) мультиплексируются в одну шину, проходящую по всем помещениям. Используя одни и те же источники данных (приемники вещания, устройства хранения, видеокамеры и т. п.), можно одновременно в разных местах просматривать (прослушивать) разные программы с высоким качеством, обеспечиваемым цифровыми технологиями. Применение компьютера с адаптером 1394 и соответствующим ПО значительно расширяет возможности этой сети. Компьютер становится виртуальным коммутатором домашней аудио-видеостудии. Приложения для аудио- и видеоустройств используют логические «вилки» (plugs) и «розетки» (sockets), которые являются аналогами разъемов, применяемых в обычной аппаратуре. Вилки соответствуют выходам, розетки — входам соответствующих устройств. «Вставляя» эти «вилки» в «розетки» можно собрать требуемую систему. Конечно, для того чтобы она заработала, в устройствах должна быть реализована спецификация Digital Interface for Consumer Electronic Audio/Video Equipment — расширение стандарта IEEE1394, предложенная DVC (Digital Video Consortium). Co временем она должна стать стандартом ISO/IEC.

Адаптер FireWire, например АНА-8940 фирмы Adaptec, может устанавливаться в любой PC (или Мае), имеющий свободный слот PCI. Для редактирования видео хватает мощности рядового современного ПК (минимальные требования — Pentium 133,32 Мбайт ОЗУ» 256 кбайт кэш, желательно быстрый SCSI-диск).

Поддержка 1394 имеется в ряде ОС, среди которых Windows 98, Windows 95 OSR 2.1 и более новые. Для редактирования аудио-видеофайлов (AVI) применимы, например, пакеты Adobe Premiere, Asymetrix Digital Video Producer, Ulead MediaStudio, MGI Video Wave. Кодек-конвертор цифровых видеоданных (DV), передаваемых по шине 1394, в AVI-файл поставляется фирмой Adaptec.

Одной из проблем цифровой передачи мультимедийной информации является защита авторских прав. Пользователь должен иметь возможность высококачественного воспроизведения принимаемых программ или приобретенных дисков, но их авторы (производители) должны иметь возможность защитить свои права, по своему усмотрению вводя ограничения на цифровое копирование. Для этих целей объединение «5С» (5 компаний: Sony, Matsushita, Intel, Hitachi и Toshiba) разрабатывает спецификацию шифрования данных.