Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций.Электроника.doc
Скачиваний:
187
Добавлен:
08.06.2015
Размер:
5.09 Mб
Скачать

Фоторезистор

Фоторезистором называют полупроводниковый резистор, сопротивление которого чувствительно к электромагнитному излучению в оптическом диапазоне спектра. Схематическое изображение структуры фоторезистора приведено на рис. 6.5,а, а его условное графическое изображение – на рис. 6.5,б.

Поток фотонов, падающих на полупроводник, вызывает появление пар электрон-дырка, увеличивающих проводимость (уменьшающих сопротивление). Это явление называют внутренним фотоэффектом (эффектом фотопроводимости). Фоторезисторы часто характеризуются зависимостью тока i от освещенности Е при заданном напряжении на резисторе. Это так называемая люкс-амперная характеристика (рис. 6.6).

Рис. 6.5. Структура (а) и схематическое обозначение (б) фоторезистора

Рис. 6.6. Люкс-амперная характеристика фоторезистора ФСК-Г7

Часто используют следующие параметры фоторезисторов:

  • номинальное темновое (при отсутствии светового потока) сопротивление (для ФСК-Г7 это сопротивление равно 5 МОм);

  • интегральную чувствительность (чувствительность, определяемая при освещении фоторезистора светом сложного спектрального состава).

Интегральная чувствительность (токовая чувствительность к световому потоку) S определяется выражением:

,

где iф – так называемый фототок (разность между током при освещении и током при отсутствии освещения);

Ф – световой поток.

Для фоторезистора ФСК-Г7 S=0,7 А/лм.

Фотодиод

Устройство и основные физические процессы. Упрощенная структура фотодиода приведена на рис. 6.7,а, а его условное графическое изображение – на рис. 6.7,б.

Рис. 6.7. Структура (а) и обозначение (б) фотодиода

Физические процессы, протекающие в фотодиодах, носят обратный характер по отношению к процессам, протекающим в светодиодах. Основным физическим явлением в фотодиоде является генерация пар электрон-дырка в области p-n-перехода и в прилегающих к нему областях под действием излучения.

Генерация пар электрон-дырка приводит к увеличению обратного тока диода при наличии обратного напряжения и к появлению напряжения uак между анодом и катодом при разомкнутой цепи. Причем uак>0 (дырки переходят к аноду, а электроны – к катоду под действием электрического поля p-n-перехода).

Характеритики и параметры. Фотодиоды удобно характеризовать семейством вольт-амперных характеристик, соответствующих различным световым потокам (световой поток измеряется в люменах, лм) или различным освещенностям (освещенность измеряется в люксах, лк).

Вольт-амперные характеристики (ВАХ) фотодиода представлена на рис. 6.8.

Рис. 6.8. Вольт-амперные характеристики фотодиода

Пусть вначале световой поток равен нулю, тогда ВАХ фотодиода фактически повторяет ВАХ обычного диода. Если световой поток не равен нулю, то фотоны, проникая в область p-nперехода, вызывают генерацию пар электрон-дырка. Под действием электрического поля p-nперехода носители тока движутся к электродам (дырки – к электроду слоя p, электроны – к электроду слоя n). В результате между электродами возникает напряжение, которое возрастает при увеличении светового потока. При положительном напряжении анод-катод ток диода может быть отрицательным (четвертый квадрант характеристики). При этом прибор не потребляет, а вырабатывает энергию.

На практике фотодиоды используют и в так называемом режиме фотогенератора (фотогальванический режим, вентильный режим), и в так называемом режиме фотопреобразователя (фотодиодный режим).

В режиме фотогенератора работают солнечные элементы, преобразующие свет в электроэнергию. В настоящее время коэффициент полезного действия солнечных элементов достигает 20 %. Пока энергия, полученная от солнечных элементов, примерно в 50 раз дороже энергии, получаемой из угля, нефти или урана.

Режим фотопреобразователя соответствует ВАХ в третьем квадранте. В этом режиме фотодиод потребляет энергию (u · i > 0) от некоторого обязательно имеющегося в цепи внешнего источника напряжения (рис. 6.9). Графический анализ этого режима выполняется при использовании линии нагрузки, как и для обычного диода. При этом характеристики обычно условно изображаются в первом квадранте (рис. 6.10).

Рис. 6.9 Рис. 6.10

Фотодиоды являются более быстродействующими приборами по сравнению с фоторезисторами. Они работают на частотах 107–1010 Гц. Фотодиод часто используют в оптопарах светодиод-фотодиод. В этом случае различные характеристики фотодиода соответствуют различным токам светодиода (который при этом создает различные световые потоки).