Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Практика готовая.docx
Скачиваний:
36
Добавлен:
31.05.2015
Размер:
260.88 Кб
Скачать

Введение

Аппроксимация функций заключается в приближенной замене заданной функции f(x) некоторой функцией j(x) так, чтобы отклонение функции j(x) от f(x) в заданной области было наименьшим. Функция j(х) при этом называется аппроксимирующей. Типичной задачей аппроксимации функций является задача интерполяции. Необходимость интерполяции функций в основном связана с двумя причинами:

1. Функция f(x) имеет сложное аналитическое описание, вызывающее определенные трудности при его использовании (например, f(x) является спец функцией: гамма-функцией, эллиптической функцией и др.).

2. Аналитическое описание функции f(x) неизвестно, т. е. f(x) задана таблично. При этом необходимо иметь аналитическое описание, приближенно представляющее f(x) (например, для вычисления значений f(x) в произвольных точках, определения интегралов и производных от f(x) и т. п.).

  1. Определение интерполяции и информация о применении интерполяции.

Интерполяция — в вычислительной математике способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений.

Многим из тех, кто сталкивается с научными и инженерными расчётами, часто приходится оперировать наборами значений, полученных опытным путём или методом случайной выборки. Как правило, на основании этих наборов требуется построить функцию, на которую могли бы с высокой точностью попадать другие получаемые значения. Такая задача называется аппроксимацией. Интерполяцией называют такую разновидность аппроксимации, при которой кривая построенной функции проходит точно через имеющиеся точки данных.

Существует также близкая к интерполяции задача, которая заключается в аппроксимации какой-либо сложной функции другой, более простой функцией. Если некоторая функция слишком сложна для производительных вычислений, можно попытаться вычислить её значение в нескольких точках, а по ним построить, то есть интерполировать, более простую функцию. Разумеется, использование упрощенной функции не позволяет получить такие же точные результаты, какие давала бы первоначальная функция. Но в некоторых классах задач достигнутый выигрыш в простоте и скорости вычислений может перевесить получаемую погрешность в результатах.

Следует также упомянуть и совершенно другую разновидность математической интерполяции, известную под названием «интерполяция операторов». К классическим работам по интерполяции операторов относятся теорема Рисса — Торина (Riesz-Thorin theorem) и теорема Марцинкевича (Marcinkiewicz theorem), являющиеся основой для множества других работ . [1]

2. Перечисление известных методов интерполяции с указанием их достоинств и недостатков.

2.1 Интерполяция методом ближайшего соседа.

Метод интерполяции, при котором в качестве промежуточного значения выбирается ближайшее известное значение функции. Интерполяция методом ближайшего соседа является самым простым методом интерполяции.[2]

2.2 Интерполяция многочленами.

На практике чаще всего применяют интерполяцию многочленами. Это связано, прежде всего, с тем, что многочлены легко вычислять, легко аналитически находить их производные и множество многочленов плотно в пространстве непрерывных функций (теорема Вейерштрасса).

Преимущества:

Для заданного набора точек и сетки параметра кривая строится однозначно.

Кривая является интерполяционной, то есть проходит через все заданные точки. Кривая имеет непрерывные производные любого порядка.

Недостатки:

С ростом числа точек порядок многочлена возрастает, а вместе с ним возрастает число операций, которое нужно выполнить для вычисления точки на кривой. С ростом числа точек у интерполяционной кривой могут возникнуть осцилляции

Линейная интерполяция - интерполяция алгебраическим двучленом P1(x) = ax + b функции f, заданной в двух точках x0 и x1 отрезка [a, b]. В случае если заданы значения в нескольких точках, функция заменяется кусочно-линейной функцией.[3]

Интерполяционная формула Ньютона - формулы вычислительной математики, применяющиеся для полиномиального интерполирования.

Если узлы интерполяции, равноотстоящие и упорядочены по величине, так что, то есть, то интерполяционный многочлен можно записать в форме Ньютона.

Интерполяционные полиномы в форме Ньютона удобно использовать, если точка интерполирования находится вблизи начала (прямая формула Ньютона) или конца таблицы (обратная формула Ньютона).[4]

Сплайн-функция - функция, область определения которой разбита на конечное число отрезков, на каждом из которых сплайн совпадает с некоторым алгебраическим полиномом. Максимальная степень из использованных полиномов называется степенью сплайна. Разность между степенью сплайна и получившейся гладкостью называется дефектом сплайна. Например, непрерывная ломаная есть сплайн степени 1 и дефекта 1.

Сплайны имеют многочисленные применения, как в математической теории, так и в разнообразных вычислительных приложениях. В частности, сплайны двух переменных интенсивно используются для задания поверхностей в различных системах компьютерного моделирования.[5]

Кубический сплайн - Некоторая функция f(x) задана на отрезке , разбитом на части . Кубическим сплайном дефекта 1 называется функция , которая:

  • на каждом отрезке является многочленом степени не выше третьей;

  • имеет непрерывные первую и вторую производные на всём отрезке ;

  • в точках выполняется равенство, т. е. сплайн интерполирует функцию f в точках.

Для однозначного задания сплайна перечисленных условий недостаточно, для построения сплайна необходимо наложить какие-то дополнительные требования. Естественным кубическим сплайном называется кубический сплайн, удовлетворяющий также граничным условиям вида.[6]