Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizika_1 ответы на вопросы.docx
Скачиваний:
166
Добавлен:
16.05.2015
Размер:
248.54 Кб
Скачать
  1. Для чего необходимо знать частоту пропускания усилителя и как ее определить?

Если частотный спектр усиливаемого сигнала полностью попадает в полосу пропускания, то частотные искажения сигнала при усилении незначительны, не влияют на диагностическую ценность кривых и считаются допустимыми. Если же спектр усиливаемого сигнала хотя бы частично выходит за пределы полосы пропускания усилителя, то частотные искажения будут значительны и такой усилитель не пригоден для усиления данного сигнала. Полоса пропускания усилителя – область частот в пределах которой коэф. усиления не ниже 0,7Kmax. Коэф. усиления – отношение амплитуды сигнала на выходе к амплитуде на входе: K=Рвых/Рвх=Uвых/Uвх=Iвых/Iвх.

  1. Назовите известные вам методы определения вязкости жидкости. Сопоставьте их достоинства и недостатки.

Вискозиметры – приборы для определения вязкости биологических жидкостей.

Метод Стокса (метод падающего шарика - только в технике, нужен V>1л).

Сила тяжести: F=mg=4/3πr3pg; Сила Архимеда: FA=4/3πr3pжg; Сила трения: Fтр=6πηrv.

При достижении равномерного движения сила тяжести становится равной сумме силы трения и силы Архимеда: 4/3πr3pg=4/3πr3pжg+6πηrv. Определяем искомую вязкость η=2(р-рж)r2g/9v.

Скорость движения шарика определяется экспериментально. Для этого измеряют время t, за которое шарик равномерно проходит в жидкости расстояние L: v=L/t.

Капиллярные методы. Вискозиметр Оствальда. U-образная трубка. Объемы вытекшей эталонной жидкости (воды) и исследуемой жидкости из верхней полости вискозиметра Оствальда объёмом V равны: V=πr4p0ght0/8η0L= πr4pght/8ηL. Отсюда вязкость исследуемой жидкости η=рtη0/p0t0.

Для определения вязкости проб крови часто используют вискозиметр Гесса, в котором определяют не время истечения жидкости из капилляра, а расстояние L0 и L, на которые перемещаются вода и кровь за одно и тоже время. η=η0L0/L.

Ротационный метод (малое кол-во крови).Этот метод позволяет определить вязкость при различных скоростях сдвига, и поэтому позволяет определить зависимость вязкости от скорости сдвига: η=f(dv/dx). Два цилиндра, внутренний подвешен на нити, внешний может вращаться вокруг своей продольной оси с регулируемой угловой скоростью w. Зазор между цилиндрами наполняют исследуемой жидкостью. Из-за вязкости жидкости при вращении внешнего цилиндра внутренний начинает поворачиваться, достигая равновесия при некотором угле поворота θ=kηw.

Билет 21

  1. Генерация потенциала действия. Его форма и характеристики. Рефрактерный период. Распространение потенциала действия по безмиелиновому нервному волокну.

Возбудимость – состояние ткани, клетки отвечать на раздражение активной специфической реакцией (генерацией нервного импульса, сокращением).

Раздражение или стимуляция – процесс воздействия на живой объект внешних факторов, (раздражители – электрический ток, возбуждение при условии I>=Iпор).

Порог возбуждения – min сила раздражителя, необходимая для возникновения возбуждения, (кол-венная мера возбудимости тканей).

Действие раздражителя приводит к изменению мембранного потенциала клетки: фм0+U, где ф0 – потенциал покоя.

Деполяризация – если мембранный потенциал становится выше потенциала покоя, U>0.

Гиперполяризация - ниже потенциала покоя, U<0.

Возбуждение (только при деполяризации) до определенного значения – критический потенциал, Екр.

Потенциал действия - кратковременное изменение мембранного потенциала во времени, которое происходит при возбуждении клетки.

Если сила раздражителя ниже порога возбуждения фмкр – подпороговый раздражитель. Нет раздражения, есть локальный ответ, проявляющийся в небольшом изменении мембранного потенциала, не достигающем Екр.

Если фм>=Екр и клетка возбуждается – пороговый раздражитель.

Фаза деполяризации (0,5-1мс). Концентрация Na+ снаружи клетки в десятки раз больше, чем внутри. При достижении Екр в мембране увеличивается проницаемость натриевых каналов и Na+ начинают лавинообразно входить в клетку, быстро повышая мембранный потенциал до фmax. Тогда Na+ накалы закрываются.

Проницаемость мембран аксона кальмара:

В покое РК+Na+Cl- =1:0,04:0,45

В фазе деполяризации РК+Na+Cl- =1:20:0,45

Фаза реполяризации обусловлена выходом ионов К+ из клетки.

Для нервных волокон: 0,5-1мс; для скелетных мышц: 5-10мс; для сердечной мышцы: 300мс.

Следовой потенциал продолжается до восстановления потенциала покоя клетки и обусловлен изменением проводимости К+ каналов при возбуждении клетки.

Амплитуда потенциала действия равна сумме абсолютных значений потенциала покоя и максимально достигаемого потенциала и составляет 90-120мВ: фдmax0. Для каждых клеток она своя.

Рефрактерный период – min время, которое разделяет два последовательных потенциала действия.

Абсолютная рефрактерность – состояние полной не возбудимости мембран.

Относительная рефрактерность – период, когда путем значительного порогового воздействия можно вызвать потенциал действия, хотя его амплитуда будет ниже нормы.

Возбуждение на каком-то участке приводит к полной деполяризации мембраны в этом месте, в результате чего потенциал внутри аксона в этом месте повышается до значения φmax, тог как в невозбужденных участках он остается отрицательным и равным потенциалу покоя φ0. Под действием разности потенциалов (φmax-φ0) между возбужденными и невозбужденными участками аксона в аксоплазме возникает локальный ответ, подобный и снаружи. Локальный токи приводят к изменению концентрации зарядов по обе стороны мембраны. Когда мембранный потенциал достигает величины порогового потенциала возбуждения, натриевые каналы открываются, ионы натрия входят в клетку. Тем временем в раннее возбужденном участке идет процесс реполяризации, обусловленный выходом калия наружу. Увеличение диаметра аксона приводит к снижению электрического сопротивления и увеличению силы локальных токов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]