Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Bilety_7-9.doc
Скачиваний:
6
Добавлен:
16.05.2015
Размер:
176.13 Кб
Скачать
      1. Билет №7

      2. 1. Второе начало термодинамики

Второе начало термодинамики может быть сформулировано несколькими способами. В наиболее очевидной формулировке второе начало гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому. Более строго, невозможны такие процессы, единственным конечным результатом которых был бы переход тепла от тела, менее нагретого, к телу, более нагретому.

Второе начало термодинамики может быть также сформулировано следующим образом: невозможны такие процессы, единственным конечным результатом которых явилось бы отнятие от некоторого тела определенного количества тепла и превращения этого тепла полностью в работу.

От греческого entropia -- поворот, превращение. Понятие энтропии впервые было введено в термодинамике для определения меры необратимого рассеяния энергии. Энтропия широко применяется и в других областях науки: в статистической физике как мера вероятности осуществления какого -- либо макроскопического состояния; в теории информации -- мера неопределенности какого-либо опыта (испытания), который может иметь разные исходы. Все эти трактовки энтропии имеют глубокую внутреннюю связь.

Энтропия -- это функция состояния, то есть любому состоянию можно сопоставить вполне определенное (с точность до константы -- эта неопределенность убирается по договоренности, что при абсолютном нуле энтропия тоже равна нулю) значение энтропии.

Для обратимых (равновесных) процессов выполняется следующее математическое равенство (следствие так называемого равенства Клаузиуса)

,

где  -- подведенная теплота,  -- температура,  и  -- состояния,  и  -- энтропия, соответствующая этим состояниям (здесь рассматривается процесс перехода из состояния  в состояние ).

Для необратимых процессов выполняется неравенство, вытекающее из так называемого неравенства Клаузиуса

,

где  -- подведенная теплота,  -- температура,  и  -- состояния,  и  -- энтропия, соответствующая этим состояниям.

Поэтому энтропия адиабатически изолированной (нет подвода или отвода тепла) системы при необратимых процессах может только возрастать.

Используя понятие энтропии Клаузиус (1876) дал наиболее общую формулировку 2-го начала термодинамики: при реальных (необратимых) адиабатических процессах энтропия возрастает, достигая максимального значения в состоянии равновесия (2-ое начало термодинамики не является абсолютным, оно нарушается при флуктуациях).

2.Коллигативные свойства растворов — это те свойства, которые при данных условиях оказываются равными и независимыми от химической природы растворённого вещества; свойства растворов, которые зависят лишь от количества кинетических единиц и от их теплового движения.

В этой статье будут кратко рассмотрены изменения термодинамических свойств растворов относительно свойств растворителя:

понижение давления пара[1],

  • повышение температуры кипения[1],

  • понижение температуры замерзания[1],

  • осмотическое давление.

3.О́смос (от греч. ὄσμος — толчок, давление) — процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону бо́льшей концентрации растворённого вещества (меньшей концентрации растворителя).

Более широкое толкование явления осмоса основано на применении Принципа Ле Шателье — Брауна: если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-либо из условий равновесия (температура, давление, концентрация, внешнее электромагнитное поле), то в системе усиливаются процессы, направленные на компенсацию внешнего воздействия.

Определить осмотическое давление раствора можно по формуле, полученной в 1886 году Я. Х. Вант-Гоффом:

π = CMв-ва · R · T, где

CMв-ва — молярная концентрация раствора, выраженная в  , а не в  , как обычно;

R — универсальная газовая постоянная;

T — термодинамическая температура системы.

      1. Первый закон Рауля Пар, находящийся в равновесии с жидкостью, называют насыщенным. Давление такого пара над чистым растворителем (p0) называют давлением или упругостью насыщенного пара чистого растворителя.

В 1886 (1887) году Ф. М. Рауль сформулировал закон:

Давление пара раствора, содержащего нелетучее растворенное вещество, прямо пропорционально мольной доле растворителя в данном растворе:

p = p0 · χр-ль, где

p — давление пара над раствором, ПА;

p0 — давление пара над чистым растворителем;

χр-ль —— мольная доля растворителя.

Криоскопия (от греч. κρύο — холод и греч. σκοπέω смотрю) — метод исследования растворов, в основе которого лежит измерение понижения температуры замерзанияраствора по сравнению с температурой замерзания чистого растворителя. Эбулиоскопия (от лат. ebulio — вскипаю и греч. σκοπέω — смотрю) — метод исследования растворов, основанный на измерении повышения их температуры кипения по сравнению с чистым растворителем. Используется для определения молекулярной массы растворенного вещества, активности растворителя, степени диссоциации (илиизотонического коэффициента)

Гуани́н (ГуаGua) — азотистое основание, аминопроизводное пурина (2-амино-6-оксопурин), является составной частьюнуклеиновых кислот. В ДНК, при репликации и транскрипции образует три водородных связи с цитозином (Cyt) (комплементарность). Впервые выделен из гуано. Физические свойства. Бесцветный, аморфный кристаллический порошок. Температура плавления 365 °C. Раствор гуанина в HCl флуоресцирует. В щелочных и кислых средах имеет по два максимума абсорбции (λмакс) в ультрафиолетовом спектре: при 275 и 248 нм (pH 2) и 246 и 273 нм (pH 11).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]