Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
203561.doc
Скачиваний:
417
Добавлен:
13.05.2015
Размер:
1.39 Mб
Скачать

Недостатки теории аррениуса.

В теории электролитов очень важным является вопрос о распределении ионов в растворе. По первоначальной теории электролитической диссоциации, основанной на физической теории растворов Вант-Гоффа, считалось, что ионы в растворах находятся в состоянии беспорядочного движения  в состоянии, подобном газообразному.

Однако представление о беспорядочном распределении ионов в растворе не соответствует действительности, так как онo не учитывают электростатического взаимодействия между ионами. Электрические силы проявляются на относительно больших расстояниях, и в сильных электролитах, где диссоциация велика, а концентрация ионов значительна и расстояния между ними невелики, электростатическое взаимодействие между ионами настолько сильно, что оно не может не сказываться на характере их распределения. Возникает тенденция к упорядоченному распределению, аналогичному распределению ионов в ионных кристаллах, где каждый ион окружён ионами противоположного знака.

Распределение ионов будет определяться соотношением электростатической энергии и энергии хаотического движения ионов. Эти энергии сравнимы по величине, поэтому реальное распределение ионов в электролите является промежуточным между беспорядочным и упорядоченным. В этом заключается своеобразие электролитов и трудности, возникающие при создании теории электролитов.

Около каждого иона образуется своеобразная ионная атмосфера, в которой преобладают ионы противоположного (по сравнению с центральным ионом) знака. Теория Аррениуса не учитывала этого обстоятельства, и многие выводы этой теории оказались в противоречии с опытом.

В качестве одной из количественных характеристик электролита теория Аррениуса предлагает степень электролитической диссоциации , определяющую долю ионизированных молекул в данном растворе. В согласии с ее физическим смыслом  не может быть больше 1 или меньше 0; при заданных условиях она должна быть одной и той же, независимо от метода ее измерения (по измерению электропроводности, осмотического давления или ЭДС). Однако на практике значения , полученные разными методами, совпадают только для разбавленных растворов слабых электролитов; для сильных электролитов расхождение тем больше, чем больше концентрация электролита, причем в области высоких концентраций  становится больше 1. Следовательно,  не может иметь того физического смысла, который ей приписывался теорией Аррениуса.

Второй количественной характеристикой по теории Аррениуса является константа диссоциации; она должна быть постоянной для данного электролита при заданных Т и Р, независимо от концентрации раствора. На практике только для разбавленных растворов очень слабых электролитов Кдис остается при разбавлении более или менее постоянной.

Т.о., теория электролитической диссоциации приложима только к разбавленным растворам слабых электролитов.

Теория электролитов дебая и гюккеля.

Основные положения современной теории растворов электролитов были сформулированы в 1923 г. Дебаем и Гюккелем. Для статистической теории электролитов исходным является следующее положение : ионы распределены в объеме раствора не хаотически, а в соответствии с законом кулоновского взаимодействия. Вокруг каждого отдельного иона существует ионная атмосфера (ионное облако)  сфера, состоящая из ионов противоположного знака. Ионы, входящие в состав сферы, непрерывно обмениваются местами с другими ионами. Все ионы раствора равноценны, каждый из них окружен ионной атмосферой, и в то же время каждый центральный ион входит в состав ионной атмосферы какого-либо другого иона. Существование ионных атмосфер и есть тот характерный признак, который, по Дебаю и Гюккелю, отличает реальные растворы электролитов от идеальных.

С помощью уравнений электростатики можно вывести формулу для электрического потенциала ионной атмосферы, из которой вытекают уравнения для средних коэффициентов активности в электролитах :

  • =

D  диэлектрическая проницаемость раствора; е  заряд электрона; zi  заряд иона; r  координата (радиус).

  • =  величина, зависящая от концентрации раствора, D и Т, но не зависящая от потенциала; имеет размерность обратной длины; характеризует изменение плотности ионной атмосферы вокруг центрального иона с увеличением расстояния r от этого иона.

Величина 1/ называется характеристической длиной ; ее можно отождествить с радиусом ионной атмосферы. Она имеет большое значение в теории растворов электролитов.

Для коэффициента активности получено следующее выражение :

lg f =  A zz (1)

Коэффициент A зависит от Т и D : обратно пропорционален (DT)3/2.

Для водных растворов 1-1 зарядных электролитов при 298 К, допуская равенство диэлектрических проницаемостей раствора и растворителя (78,54), можно записать :

lg f =  A =  A = 0,51

Т.о., теория Дебая и Гюккеля позволяет получить такое же уравнение для коэффициента активности, какое было эмпирически найдено для разбавленных растворов электролитов. Теория, следовательно, находится в качественном согласии с опытом. При разработке этой теории были сделаны следующие допущения :

  1. Число ионов в электролите можно определить из аналитической концентрации электролита, т.к. он считается полностью диссоциированным ( 1). Теорию Дебая и Гюккеля поэтому иногда называют теорией полной диссоциации. Однако ее можно применить и в тех случаях, когда  1.

  2. Распределение ионов вокруг любого центрального иона подчиняется классической статистике Максвелла-Больцмана.

  3. Собственными размерами ионов можно пренебречь по сравнению с расстояниями между ними и с общим объемом раствора. Т.о., ионы отождествляются с материальными точками, и все их свойства сводятся лишь к величине заряда. Это допущение справедливо только для разбавленных растворов.

  4. Взаимодействие между ионами исчерпывается кулоновскими силами. Наложение сил теплового движения приводит к такому распределению ионов в растворе, для которого характерна статистическая шаровая ионная атмосфера. Это допущение справедливо лишь для разбавленных растворов. При повышении концентрации среднее расстояние между ионами уменьшается, и наряду с электростатическими силами появляются другие силы, действующие на более близком расстоянии, в первую очередь силы Ван-дер-Ваальса. Возникает необходимость учета взаимодействия не только между данным ионом и его окружением, но и между любыми двумя соседними ионами.

  5. При расчетах принимается, что диэлектрические проницаемости раствора и чистого растворителя равны; это справедливо только в случае разбавленных растворов.

Т.о., все допущения Дебая и Гюккеля приводят к тому, что их теория может быть применима только к разбавленным растворам электролитов с ионами низкой валентности. Уравнение (1) соответствует этому предельному случаю и выражает так называемый предельный закон Дебая и Гюккеля или первое приближение теории Дебая и Гюккеля.

Предельный закон Дебая-Гюккеля дает верные значения коэффициентов активности 1-1 зарядного электролита, особенно в очень разбавленных растворах. Сходимость теории с опытом ухудшается по мере увеличения концентрации электролита, увеличения зарядов ионов и уменьшения диэлектрической проницаемости растворителя, т.е. с ростом сил взаимодействия между ионами.

Первая попытка усовершенствовать теорию Дебая и Гюккеля и расширить область ее применения была сделана самими авторами. Во втором приближении они отказались от представления об ионах как о материальных точках (допущение 3) и попытались учесть конечные размеры ионов, наделив каждый электролит некоторым средним диаметром а (при этом изменяется и допущение 4). Приписав ионам определенные размеры, Дебай и Гюккель учли тем самым силы некулоновского происхождения, препятствующие сближению ионов на расстояние, меньшее некоторой величины.

Во втором приближении средний коэффициент активности описывается уравнением :

lg f =  (2)

где А сохраняет прежнее значение; а условно названо средним эффективным диаметром ионов , имеет размерность длины, фактически  эмпирическая постоянная; В = /, В слегка изменяется с Т. Для водных растворов произведение Ва близко к 1.

Сохранив основные положения второго приближения теории, Гюккель учел уменьшение диэлектрической проницаемости с ростом концентрации растворов. Ее уменьшение вызывается ориентацией диполей растворителя вокруг иона, в результате чего снижается их реакция на эффект внешнего поля. Уравнение Гюккеля выглядит следующим образом :

lg f =  + CI (3)

где С  эмпирическая константа. При удачном подборе значений В и С формула Гюккеля хорошо согласуется с опытом и широко используется при расчетах. При последовательном уменьшении ионной силы уравнение (3) последовательно переходит в формулу второго приближения теории Дебая и Гюккеля (уравнение (2)), а затем в предельный закон Дебая-Гюккеля (уравнение (1)).

В процессе развития теории Дебая-Гюккеля и последовательного отказа от принятых допущений улучшается сходимость с опытом и расширяется область ее применимости, однако это достигается ценой превращения теоретических уравнений в полуэмпирические.

Лекция 44

Ионное равновесие в растворах электролитов : диссоциация воды, рН растворов, диссоциация слабых электролитов, гидролиз, буферные растворы, произведение растворимости.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]