Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

B.Thide - Electromagnetic Field Theory

.pdf
Скачиваний:
37
Добавлен:
07.05.2013
Размер:
1.09 Mб
Скачать

ϒ

Bo Thidé

U p s i l o n

B o o k s

i

i

i

i

i

i

ϒ

ELECTROMAGNETIC FIELD THEORY

Bo Thidé

i

i

i

Also available

ELECTROMAGNETIC FIELD THEORY

EXERCISES

by

Tobia Carozzi, Anders Eriksson, Bengt Lundborg,

Bo Thidé and Mattias Waldenvik

i

i

i

ELECTROMAGNETIC

FIELD THEORY

Bo Thide´

Swedish Institute of Space Physics

and

Department of Astronomy and Space Physics

Uppsala University, Sweden

and

School of Mathematics and Systems Engineering

Vaxj¨ o¨ University, Sweden

ϒ

Upsilon Books Communa AB Uppsala Sweden

i

i

i

This book was typeset in LATEX 2" (based on TEX 3.14159 and Web2C 7.3.9) on an HP Visualize 9000/360 workstation running HP-UX 11.11.

Copyright ©1997, 1998, 1999, 2000, 2001 and 2002 by

Bo Thidé

Uppsala, Sweden

All rights reserved.

Electromagnetic Field Theory

ISBN X-XXX-XXXXX-X

i

i

i

Contents

Preface

xi

1 Classical Electrodynamics

1

1.1 Electrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

1.1.1 Coulomb's law . . . . . . . . . . . . . . . . . . . . . .

2

1.1.2The electrostatic field . . . . . . . . . . . . . . . . . . . 3

1.2 Magnetostatics . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1Ampère's law . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2The magnetostatic field . . . . . . . . . . . . . . . . . . 7

1.3 Electrodynamics . . . . . . . . . . . . . . . . .

. . . . . . . .

9

1.3.1

Equation of continuity for electric charge

. . . . . . . . 10

1.3.2

Maxwell's displacement current . . . . .

. . . . . . . .

10

1.3.3Electromotive force . . . . . . . . . . . . . . . . . . . . 11

1.3.4Faraday's law of induction . . . . . . . . . . . . . . . . 12

1.3.5 Maxwell's microscopic equations . . . . . . . . . . . . 15

1.3.6Maxwell's macroscopic equations . . . . . . . . . . . . 16

1.4

Electromagnetic Duality . . . . . . . . . . . . . . . . . . . . .

16

 

Example 1.1 Faraday's law as a consequence of conserva-

 

 

tion of magnetic charge . . . . . . . . . . . . .

18

 

Example 1.2

Duality of the electromagnetodynamic equations 19

 

Example 1.3 Dirac's symmetrised Maxwell equations for a

 

 

fixed mixing angle . . . . . . . . . . . . . . . . 20

 

Example 1.4

The complex field six-vector . . . . . . . . .

21

 

Example 1.5

Duality expressed in the complex field six-vector 22

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

2 Electromagnetic Waves

 

25

2.1

The Wave Equations . . . . . . . . . . . . . . . . . . . . . . .

26

2.1.1The wave equation for E . . . . . . . . . . . . . . . . . 26

2.1.2The wave equation for B . . . . . . . . . . . . . . . . . 26

2.1.3 The time-independent wave equation for E . . . . .

.

.

27

Example 2.1 Wave equations in electromagnetodynamics

.

.

28

2.2Plane Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Telegrapher's equation . . . . . . . . . . . . . . . . . . 31

2.2.2Waves in conductive media . . . . . . . . . . . . . . . . 32

i

i

i

i

ii

CONTENTS

2.3 Observables and Averages

. . . . . . . . . . . . . . . .

. .

.

.

34

Bibliography . . . . . . . . .

. . . . . . . . . . . . . . . . .

. .

.

.

35

3 Electromagnetic Potentials

 

 

 

 

37

3.1The Electrostatic Scalar Potential . . . . . . . . . . . . . . . . . 37

3.2The Magnetostatic Vector Potential . . . . . . . . . . . . . . . . 38

3.3The Electrodynamic Potentials . . . . . . . . . . . . . . . . . . 38

3.3.1Electrodynamic gauges . . . . . . . . . . . . . . . . . . 40 Lorentz equations for the electrodynamic potentials . . . 40 Gauge transformations . . . . . . . . . . . . . . . . . . 41

3.3.2Solution of the Lorentz equations for the electromag-

netic potentials . . . . . . . . . . . . . . .

. . . . . . . 42

The retarded potentials . . . . . . . . . . . . . . . . . . 46

Example 3.1 Electromagnetodynamic potentials

. .

. .

.

.

46

Bibliography . . . . . . . . . . . . . . . . . . . . . . .

. . .

. .

.

.

47

4 Relativistic Electrodynamics

 

 

 

 

49

4.1The Special Theory of Relativity . . . . . . . . . . . . . . . . . 49

4.1.1 The Lorentz transformation . . . . . . . . . . . . . . . 50

4.1.2Lorentz space . . . . . . . . . . . . . . . . . . . . . . . 51 Radius four-vector in contravariant and covariant form . 52

Scalar product and norm . . . . . . . . . . . . .

. . . . 52

Metric tensor . . . . . . . . . . . . . . . . . . .

. .

.

.

53

Invariant line element and proper time . . . . . .

. .

.

.

54

Four-vector fields . . . . . . . . . . . . . . . . . . . . . 56

The Lorentz transformation matrix . .

. . . . . .

. .

.

.

56

The Lorentz group . . . . . . . . . .

. . . . . .

. .

.

.

56

4.1.3 Minkowski space . . . . . . . . . . . . . . . . . . . . . 57

4.2Covariant Classical Mechanics . . . . . . . . . . . . . . . . . . 59

4.3Covariant Classical Electrodynamics . . . . . . . . . . . . . . . 61

4.3.1 The four-potential . . . . . . . . . . . . . . . . . . . . 61

4.3.2The Liénard-Wiechert potentials . . . . . . . . . . . . . 62

4.3.3The electromagnetic field tensor . . . . . . . . . . . . . 64

Bibliography . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . 67

5 Electromagnetic Fields and Particles

69

5.1Charged Particles in an Electromagnetic Field . . . . . . . . . . 69

5.1.1Covariant equations of motion . . . . . . . . . . . . . . 69

Lagrange formalism . . . .

. .

. . . . . . . . .

. .

.

.

70

Hamiltonian formalism . . .

. .

. . . . . . . . .

. .

.

.

72

Downloaded from http://www.plasma.uu.se/CED/Book

Draft version released 31st October 2002 at 14:46.

i

i

i

iii

5.2Covariant Field Theory . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1Lagrange-Hamilton formalism for fields and interactions 76 The electromagnetic field . . . . . . . . . . . . . . . . . 80

Example 5.1 Field energy difference expressed in the field tensor . . . . . . . . . . . . . . . . . . . . . . 81

Other fields . . . . . . . . . .

. . . . . .

. . .

. . .

.

.

84

Bibliography . . . . . . . . . . . . . .

. .

. . . . . .

. . .

. . .

.

.

85

6 Electromagnetic Fields and Matter

 

 

 

 

 

 

87

6.1Electric Polarisation and Displacement . . . . . . . . . . . . . . 87

6.1.1 Electric multipole moments . . . . . . . . . . . . . . . 87

6.2Magnetisation and the Magnetising Field . . . . . . . . . . . . . 90

6.3Energy and Momentum . . . . . . . . . . . . . . . . . . . . . . 92

6.3.1 The energy theorem in Maxwell's theory . . . . . . . . 92

6.3.2The momentum theorem in Maxwell's theory . . . . . . 93

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . 95

7 Electromagnetic Fields from Arbitrary Source Distributions

97

7.1The Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2The Electric Field . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3 The Radiation Fields . . . . . . . . . . . . . . . . . . . . . . . 103

7.4Radiated Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.4.1 Monochromatic signals . . . . . . . . . . . . . . . . . . 106

7.4.2 Finite bandwidth signals . . . . . . . . . . . . . . .

. .

107

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

108

8 Electromagnetic Radiation and Radiating Systems

 

109

8.1 Radiation from Extended Sources . . . . . . . . . . . . . .

. .

109

8.1.1 Radiation from a one-dimensional current distribution

. 110

8.1.2 Radiation from a two-dimensional current distribution

. 113

8.2Multipole Radiation . . . . . . . . . . . . . . . . . . . . . . . . 116 8.2.1 The Hertz potential . . . . . . . . . . . . . . . . . . . . 116

8.2.2

Electric dipole radiation

. . . . . . . . .

. . .

. . .

.

.

120

8.2.3

Magnetic dipole radiation

. . . . . . . .

. . .

. . .

.

.

122

8.2.4Electric quadrupole radiation . . . . . . . . . . . . . . . 123

8.3Radiation from a Localised Charge in Arbitrary Motion . . . . . 124

8.3.1The Liénard-Wiechert potentials . . . . . . . . . . . . . 125

8.3.2 Radiation from an accelerated point charge . . . . . . . 127

The differential operator method . . . . . . . . . . . .

.

129

Example 8.1 The fields from a uniformly moving charge .

.

134

Draft version released 31st October 2002 at 14:46.

Downloaded from http://www.plasma.uu.se/CED/Book

i

i

i

iv

CONTENTS

Example 8.2 The convection potential and the convection force136

Radiation for small velocities . . . . . . . . . . . . . . 139

8.3.3Bremsstrahlung . . . . . . . . . . . . . . . . . . . . . . 140

Example 8.3 Bremsstrahlung for low speeds and short acceleration times . . . . . . . . . . . . . . . . . 143

8.3.4Cyclotron and synchrotron radiation . . . . . . . . . . . 145 Cyclotron radiation . . . . . . . . . . . . . . . . . . . . 147 Synchrotron radiation . . . . . . . . . . . . . . . . . . . 148 Radiation in the general case . . . . . . . . . . . . . . . 150

 

 

Virtual photons . . . . . . . . . . . . . . . . . . . . . . 151

 

8.3.5

Radiation from charges moving in matter . . . . . . . . 153

 

 

ˇ

 

155

 

 

Vavilov-Cerenkov radiation . . . . . . . . . . . . . . .

Bibliography

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

F Formulae

 

 

161

F.1

The Electromagnetic Field . . . . . . . . . . . . . . . . . . . .

161

 

F.1.1

Maxwell's equations . . . . . . . . . . . . . . . . . . .

161

 

 

Constitutive relations . . . . . . . . . . . . . . . . . . . 161

 

F.1.2

Fields and potentials . . . . . . . . . . . . . . . . . . .

161

 

 

Vector and scalar potentials . . . . . . . . . . . . . . .

161

 

 

Lorentz' gauge condition in vacuum

. . . . . . . . . . . 162

 

F.1.3

Force and energy . . . . . . . . . . . . . . . . . . . . .

162

 

 

Poynting's vector . . . . . . . . . . . . . . . . . . . . . 162

 

 

Maxwell's stress tensor . . . . . . . . . . . . . . . . . . 162

F.2

Electromagnetic Radiation . . . . . . . . . . . . . . . . . . . .

162

 

F.2.1

Relationship between the field vectors in a plane wave . 162

 

F.2.2

The far fields from an extended source distribution . . . 162

 

F.2.3

The far fields from an electric dipole . . . . . . . . . . .

162

 

F.2.4

The far fields from a magnetic dipole

. . . . . . . . . . 163

 

F.2.5

The far fields from an electric quadrupole . . . . . . . . 163

 

F.2.6

The fields from a point charge in arbitrary motion . . . . 163

F.3

Special Relativity . . . . . . . . . . . . . . . . . . . . . . . . .

163

 

F.3.1

Metric tensor . . . . . . . . . . . . . . . . . . . . . . .

163

 

F.3.2

Covariant and contravariant four-vectors . . . . . . . . .

164

 

F.3.3

Lorentz transformation of a four-vector . . . . . . . . .

164

 

F.3.4 Invariant line element . . . . . . . . . . . . . . . . . . . 164

 

F.3.5

Four-velocity . . . . . . . . . . . . . . . . . . . . . . .

164

 

F.3.6

Four-momentum . . . . . . . . . . . . . . . . . . . . .

164

 

F.3.7

Four-current density . . . . . . . . . . . . . . . . . . .

164

 

F.3.8 Four-potential . . . . . . . . . . . . . . . . . . . . . . . 164

Downloaded from http://www.plasma.uu.se/CED/Book

Draft version released 31st October 2002 at 14:46.

i

i

i

Соседние файлы в предмете Физика