Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

B.Thide - Electromagnetic Field Theory

.pdf
Скачиваний:
37
Добавлен:
07.05.2013
Размер:
1.09 Mб
Скачать

6.3 ENERGY AND MOMENTUM

93

Inserting this into Equation (6.25) on the facing page

 

+ZS (E H) nˆ d2x0

ZV j EEMF d3x0

=ZV

d3x0

+@t

ZV 2

(E D +H B) d3x0

 

 

 

 

 

 

 

j2

@

1

 

 

 

 

 

 

 

 

 

|

 

{z

 

}

|

 

 

{z

 

}

 

|

 

 

{z

 

}

|

 

{z

 

}

 

 

 

 

 

 

 

 

 

 

 

Applied electric power

 

Joule heat

 

 

 

Field energy

 

 

Radiated power

 

(6.28)

which is the energy theorem in Maxwell's theory also known as Poynting's theorem.

It is convenient to introduce the following quantities:

Ue =

2 ZV E Dd3x0

(6.29)

 

1

 

 

Um =

2 ZV H Bd3x0

(6.30)

 

1

 

 

S = E H

(6.31)

where Ue is the electric field energy, Um is the magnetic field energy, both measured in J, and S is the Poynting vector (power flux), measured in W/m2.

6.3.2 The momentum theorem in Maxwell's theory

Let us now investigate the momentum balance (force actions) in the case that a field interacts with matter in a non-relativistic way. For this purpose we consider the force density given by the Lorentz force per unit volume E+j B. Using Maxwell's equations (6.23) and symmetrising, we obtain

E +j B = (r D)E + r H @t

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

@D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

@D

 

 

 

 

 

 

 

= E(r D) +(r H) B

 

 

B

 

 

 

 

 

 

 

 

@t

 

 

 

 

 

 

 

= E(r D) B (r H)

 

 

 

 

 

 

 

 

 

 

 

@

(D B) +D

 

 

@B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

@t

 

@t

 

 

 

 

 

 

 

 

 

 

(6.32)

= E(r D) B (r H)

 

 

 

 

 

 

 

 

 

 

 

@

(D B) D

(r E) +H(r B)

 

 

 

 

 

 

 

 

 

 

 

 

@t

 

 

 

 

 

[E(

 

 

D)

D

(

 

 

 

E)]

 

 

[H( |{z}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B)

B

(r

H)]

= r

 

 

 

 

r

 

 

 

 

 

+ r

 

 

 

@

(D B)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

@t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Draft version released 31st October 2002 at 14:46.

Downloaded from http://www.plasma.uu.se/CED/Book

i

i

i

94

ELECTROMAGNETIC FIELDS AND MATTER

One verifies easily that the ith vector components of the two terms in square brackets in the right hand member of (6.32) can be expressed as

[E(r D) D (r E)]i = 2 E

@xi

D @xi

+

@x j

EiD j 2E D i j

1

@D

 

@E

 

@

1

 

 

 

 

 

 

 

 

(6.33)

and

 

B @xi

 

 

HiB j 2 B H i j

[H(r B) B (r H)]i = 2 H

@xi

+

@x j

1

 

@B

@H

 

@

1

 

 

 

 

 

 

 

 

(6.34)

respectively.

Using these two expressions in the ith component of Equation (6.32) on the previous page and re-shuffling terms, we get

( E +j B)i 2 E @xi

D

@xi + H

@xi

B

@xi +

@t (D B)i

 

 

1

 

 

 

 

 

 

 

@D

 

 

 

@E

@B

 

 

@H

@

 

 

= @x j

 

EiD j

 

2 E D i j +HiB j 2 H B i j

 

 

 

 

 

@

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(6.35)

Introducing the electric volume force Fev via its ith component

 

 

 

(Fev)i =( E+j B)i

 

2

E @xi

D @xi +

H @xi

B @xi

(6.36)

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

@D

 

 

 

@E

 

 

@B

 

@H

 

 

 

and the Maxwell stress tensor T with components

 

 

 

 

 

 

 

 

 

1

E D

 

 

 

 

 

 

1

H B i j

 

 

 

 

 

 

 

(6.37)

Ti j = EiD j

 

i j +HiB j

 

 

 

 

 

 

 

 

 

2

2

 

 

 

 

 

 

 

we finally obtain the force equation

 

 

 

 

 

 

 

 

 

 

 

 

 

Fev + @@t (D B) i

= @xijj = (r T)i

 

 

 

 

 

 

 

(6.38)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

@T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If we introduce the relative electric permittivity and the relative magnetic

permeability m as

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D = "0E = "E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(6.39)

B = m 0H = H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(6.40)

Downloaded from http://www.plasma.uu.se/CED/Book

Draft version released 31st October 2002 at 14:46.

i

i

i

6.3 BIBLIOGRAPHY

95

we can rewrite (6.38) as

@t i

 

 

@x j

= Fev +

c2

(6.41)

 

@Ti j

 

m @S

 

where S is the Poynting vector defined in Equation (6.29) on page 93. Integration over the entire volume V yields

ZV

Fev d3x0 +dt

ZV

c2m Sd3x0

= ZS Tnˆ d2x0

(6.42)

 

 

 

 

 

 

d

 

 

 

 

 

 

 

 

 

 

 

|

 

 

{z

 

}

 

|

 

 

{z

 

}

|

 

{z

 

}

 

Force on the matter

Field momentum

Maxwell stress

 

which expresses the balance between the force on the matter, the rate of change of the electromagnetic field momentum and the Maxwell stress. This equation is called the momentum theorem in Maxwell's theory.

In vacuum (6.42) becomes

ZV

(E +v B) d3x0 + c2 dt ZV Sd3x0

= ZS Tnˆ d2x0

(6.43)

 

 

 

 

1 d

 

 

or

 

 

 

 

 

 

 

 

dt pmech + dt pfield = ZS Tnˆ d2x0

 

(6.44)

 

d

 

d

 

 

Bibliography

[1]E. HALLÉN, Electromagnetic Theory, Chapman & Hall, Ltd., London, 1962.

[2]J. D. JACKSON, Classical Electrodynamics, third ed., John Wiley & Sons, Inc., New York, NY . . . , 1999, ISBN 0-471-30932-X.

[3]W. K. H. PANOFSKY AND M. PHILLIPS, Classical Electricity and Magnetism, second ed., Addison-Wesley Publishing Company, Inc., Reading, MA . . . , 1962, ISBN 0-201-05702-6.

[4]J. A. STRATTON, Electromagnetic Theory, McGraw-Hill Book Company, Inc., New York, NY and London, 1953, ISBN 07-062150-0.

Draft version released 31st October 2002 at 14:46.

Downloaded from http://www.plasma.uu.se/CED/Book

i

i

i

96

ELECTROMAGNETIC FIELDS AND MATTER

Downloaded from http://www.plasma.uu.se/CED/Book

Draft version released 31st October 2002 at 14:46.

i

i

i

7

Electromagnetic Fields from Arbitrary Source Distributions

While, in principle, the electric and magnetic fields can be calculated from the Maxwell equations in Chapter 1, or even from the wave equations in Chapter 2, it is often physically more lucid to calculate them from the electromagnetic potentials derived in Chapter 3. In this chapter we will derive the electric and magnetic fields from the potentials.

We recall that in order to find the solution (3.35) for the generic inhomogeneous wave equation (3.19) on page 43 we presupposed the existence of a Fourier transform pair (3.20a) on page 43 for the generic source term

(t;x) = Z1d! !(x)e i!t

(7.1a)

 

 

1

 

!(x) =

2 Z1 dt (t;x) ei!t

(7.1b)

 

1

1

 

That such transform pairs exists is true for most physical variables which are neither strictly monotonically increasing nor strictly monotonically decreasing with time. For charge and current densities varying in time we can therefore, without loss of generality, work with individual Fourier components w(x) and jw(x), respectively. Strictly speaking, the existence of a single Fourier component assumes a monochromatic source (i.e., a source containing only one single frequency component), which in turn requires that the electric and magnetic fields exist for infinitely long times. However, by taking the proper limits, we may still use this approach even for sources and fields of finite duration.

This is the method we shall utilise in this chapter in order to derive the electric and magnetic fields in vacuum from arbitrary given charge densities(t;x) and current densities j(t;x), defined by the temporal Fourier transform

97

i

i

i

98

 

 

 

 

ELECTROMAGNETIC FIELDS AND MATTER

pairs

 

 

 

 

 

(t;x) = Z 1d!!(x)e i!t

(7.2a)

 

1

 

!(x) = 2 Z 1 dt (t;x) ei!t

(7.2b)

 

1

 

1

 

and

 

 

 

 

 

j(t;x) = Z 1d!j!(x) e i!t

(7.3a)

 

1

 

j!(x) =

2

Z 1 dt j(t;x) ei!t

(7.3b)

 

1

 

1

 

under the assumption that only retarded potentials produce physically acceptable solutions.1

The temporal Fourier transform pair for the retarded scalar potential can then be written

(t;x) = Z 1d!!(x) e i!t

 

 

 

 

 

 

 

(7.4a)

 

1

 

 

 

 

 

 

 

 

 

 

1

Z 1

 

1

Z

 

eik x

x0

 

 

!(x) =

 

dt (t;x) ei!t =

 

!(x0)

 

j j

d3x0

(7.4b)

2

4"0

j

x x0

 

 

1

 

 

 

 

 

j

 

 

where in the last step, we made use of the explicit expression for the temporal Fourier transform of the generic potential component !(x), Equation (3.32) on page 45. Similarly, the following Fourier transform pair for the vector potential must exist:

A(t;x) = Z 1d!A!(x)e i!t

 

 

 

 

ik x

x0

 

(7.5a)

 

 

1

 

 

 

 

 

 

 

 

 

A!(x) =

1

Z 1

dt A(t;x) ei!t =

0

Z

j!(x0)

e j j

d3x0

(7.5b)

2

4

x x0

 

 

 

1

 

 

 

 

j

 

j

 

 

Clearly, we must require that

 

 

 

 

 

 

 

 

A! = A !;

 

! = !

 

 

 

 

 

 

 

(7.6)

in order that all physical quantities be real. Similar transform pairs and requirements of real-valuedness exist for the fields themselves.

1In fact, John A. Wheeler and Richard P. Feynman derived in 1945 a fully self-consistent electrodynamics using both the retarded and the advanced potentials [6]; See also [1].

Downloaded from http://www.plasma.uu.se/CED/Book

Draft version released 31st October 2002 at 14:46.

i

i

i

7.1 THE MAGNETIC FIELD

99

In the limit that the sources can be considered monochromatic containing only one single frequency !0, we have the much simpler expressions

(t;x) = 0(x)e i!0t

(7.7a)

j(t;x) = j0(x)e i!0t

(7.7b)

(t;x) = 0(x)e i!0t

(7.7c)

A(t;x) = A0(x)e i!0t

(7.7d)

where again the real-valuedness of all these quantities is implied. As discussed above, we can safely assume that all formulae derived for a general temporal Fourier representation of the source (general distribution of frequencies in the source) are valid for these simple limiting cases. We note that in this context, we can make the formal identification ! = 0 (! !0), j! =j0 (! !0) etc., and that we therefore, without any loss of stringence, let 0 mean the same as the Fourier amplitude ! and so on.

7.1 The Magnetic Field

Let us now compute the magnetic field from the vector potential, defined by Equation (7.5a) and Equation (7.5b) on the facing page, and Formula (3.6) on page 38:

B(t;x) = r A(t;x)

(7.8)

The calculations are much simplified if we work in ! space and, at the final stage, Fourier transform back to ordinary t space. We are working in the Lorentz gauge and note that in ! space the Lorentz condition, Equation (3.13) on page 40, takes the form

k

 

 

r A! i c

! = 0

(7.9)

which provides a relation between (the Fourier transforms of) the vector and scalar potentials.

Using the Fourier transformed version of Equation (7.8) above and Equation (7.5b) on the facing page, we obtain

 

0

r ZV j!(x0)

 

ik x

x0

 

 

B!(x) = r A!(x) =

e j j

d3x0

(7.10)

4

x x0

 

 

 

j

 

j

 

 

Draft version released 31st October 2002 at 14:46.

Downloaded from http://www.plasma.uu.se/CED/Book

i

i

i

100

ELECTROMAGNETIC FIELDS FROM ARBITRARY SOURCE DISTRIBUTIONS

Using Formula (F.57) on page 166, we can rewrite this as

Z eikjx x0j

B!(x) = 40 V j!(x0) r jx x0j d3x0

= 40 ZV j!(x0) x

 

x00

3 eikjx x0j d3x0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ZV

 

 

0

 

 

j

 

 

 

j

 

j

 

 

 

j jx x0j

 

0

 

(7.11)

 

 

 

 

 

!

 

jx x0j

 

 

 

 

+

 

j

 

(x

)

ik

x

x0

 

eik x

x0

 

1

d3x

 

 

 

 

 

 

 

 

 

 

 

 

 

=

0

ZV

 

j!(x0)eikxjx xx0j0 3 (x x0)

d3x0

 

 

 

 

4

 

 

 

 

 

 

+ZV

 

 

 

 

j

 

j

 

 

2j

 

 

 

 

 

0

 

d3x0

 

 

 

 

 

 

 

( ik)j!(x0)x

 

jx0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eik x

 

x0

 

 

(x

 

 

x

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j

 

 

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From this expression for the magnetic field in the frequency (!) domain, we obtain the total magnetic field in the temporal (t) domain by taking the inverse Fourier transform (using the identity ik = i!=c):

B(t;x) = Z 1d!B!(x)e i!t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

0

Z

V

R j!(x0)ei(kjx xx0j x0t)3d! (x x0)

d3x0

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V R

 

 

 

 

 

 

 

 

 

 

!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ c

 

 

 

 

 

 

!

 

0

 

 

xj x0j 2

 

 

 

 

 

 

0

 

d3x0

 

(7.12)

 

 

 

 

1

Z

 

 

 

(

 

 

i!)j

 

(x

)ei(k x x0

 

 

!t) d!

 

(x

 

x

)

 

 

 

 

 

 

 

 

 

40

ZV

ret0

 

x0

 

x0

 

3

0

 

j

 

 

j

ZV j(tret0

 

x0

 

x0

 

 

 

 

d3x0

=

j(t

 

)

 

)

d3x0 +

 

4 0c

 

)

 

2

0

)

 

 

 

 

 

 

;x

 

 

(x

 

x

 

 

 

 

 

˙

 

 

 

;x

 

(x

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

 

 

 

 

 

 

j

 

 

j

 

 

 

 

 

 

 

 

|

 

 

 

 

 

 

j

 

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

{z

 

 

 

 

 

 

 

 

 

}

 

 

 

 

 

 

 

{z

 

 

 

 

 

 

 

 

}

 

 

 

 

 

 

 

Induction field

 

 

 

 

 

 

 

 

 

 

 

Radiation field

 

 

 

 

 

where

j˙(t0

;x0)

def

@j

(7.13)

 

 

ret

 

@t

t=tret0

The first term, the induction field, dominates near the current source but falls off rapidly with distance from it, is the electrodynamic version of the BiotSavart law in electrostatics, Formula (1.15) on page 8. The second term, the radiation field or the far field, dominates at large distances and represents energy that is transported out to infinity. Note how the spatial derivatives (r) gave rise to a time derivative (˙)!

Downloaded from http://www.plasma.uu.se/CED/Book

Draft version released 31st October 2002 at 14:46.

i

i

i

7.2 THE ELECTRIC FIELD

101

7.2 The Electric Field

In order to calculate the electric field, we use the temporally Fourier transformed version of Formula (3.10) on page 39, inserting Equations (7.4b) and (7.5b) as the explicit expressions for the Fourier transforms of and A:

E!(x) = r !(x) +i!A!(x)

 

 

1

 

rZV

 

 

 

eik x x0

 

 

 

 

 

i

!

ZV j!(x0)

ik x x0

 

=

 

!(x0)

j j

d3x0 +

0

e j j

d3x0

4"0

x x0

 

4

x x0

= 4"0

ZV

 

 

 

 

j

 

j

 

0

 

d3x0

 

 

 

j

j

 

!(x0)ex j x0j3

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

ik x

x0 (x

 

x

 

)

 

 

 

 

 

 

 

 

 

(7.14)

 

 

 

 

 

j

 

 

 

 

j

x0

0

 

 

 

 

!c

0

 

x j x0j

d3x0

 

 

 

 

ik ZV

 

!( x0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

)(x x

)

 

 

j

(x

)

eik x x0

 

 

 

 

 

 

 

 

 

 

 

 

j

 

 

j

 

 

 

 

 

 

 

 

 

j j

 

 

Using the Fourier transform of the continuity Equation (1.23) on page 10

r0 j!(x0) i!!(x0) = 0

(7.15)

we see that we can express ! in terms of j! as follows

 

 

i

 

!(x0) =

 

r0 j!(x0)

(7.16)

!

Doing so in the last term of Equation (7.14) above, and also using the fact that k = !=c, we can rewrite this Equation as

 

1

 

ZV

 

 

 

 

 

ik x x0 (x

 

x

)

 

 

 

 

 

 

 

 

 

E!(x) =

 

 

 

!(x0)e j j

 

0

 

d3x0

 

 

 

 

 

 

4"0

 

 

x x0 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j

 

j

 

 

 

 

ikj!(x0)

eik x

x0

 

 

 

 

 

1

ZV

[r

0

j

(x )](x

 

x

)

 

 

(7.17)

 

 

 

 

 

!x

0

 

 

 

0

 

 

j j

d3x0

 

c

 

 

 

x0

j

 

 

j

x x0

 

 

 

 

 

|

 

 

 

 

 

 

j

 

 

 

{z

 

 

j

 

}

 

 

I!

The last vector-valued integral can be further rewritten in the following way:

I! = ZV

r

 

(x )](x

 

 

x

)

ikj!(x0)

ik x

x0

 

 

 

[

0 j!jx 0 x0j

 

0

 

e j j

 

d3x0

 

 

 

 

jx x0j

(7.18)

=

 

@j!m

xl xl0

 

ik j

 

 

(x

) xˆ

 

eikjx x0j

d3x

0

 

 

@xm0 jx x0j

 

 

 

 

 

ZV

 

 

!l

0

 

l jx x0j

 

 

 

Draft version released 31st October 2002 at 14:46.

Downloaded from http://www.plasma.uu.se/CED/Book

i

i

i

102

ELECTROMAGNETIC FIELDS FROM ARBITRARY SOURCE DISTRIBUTIONS

 

But, since

j!m

 

 

x0l02 eikjx x0j =

@xm0

x

x0l02 eikjx x0j

 

 

@xm0

 

x

 

 

@

 

 

xl

 

 

x

 

 

 

 

 

 

 

@j!m

 

 

xl

 

 

x

 

 

 

 

 

 

j

 

 

j

 

 

 

 

 

 

 

 

 

 

j

 

j

 

 

(7.19)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ j!m @@xm0

xl x0l02 eikjx x0j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

x

 

 

 

we can rewrite I! as

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j

 

 

j

 

 

 

 

 

xl x0l02 xˆl eikjx x0j +ikj!ex j x0j d3x0

 

 

I! = ZV j!m @@xm0

 

 

 

 

 

 

 

 

 

 

 

 

 

x

x

 

 

 

 

 

 

 

 

 

 

ik x

x0

 

 

 

+ZV @@xm0

 

 

 

 

 

j

 

j

 

 

 

 

 

 

 

 

 

j

 

j

(7.20)

 

 

j!m xl x0l02 xˆl eikjx x0j d3x0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j

 

 

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

where, according to Gauss's theorem, the last term vanishes if j! is assumed to be limited and tends to zero at large distances. Further evaluation of the derivative in the first term makes it possible to write

I! = ZV

j! x

j

x0

 

2

+ x x0 4 j! (x x0) (x x0)eikjx x0j

 

 

 

 

eik x x0j

 

 

 

 

 

2

 

 

 

 

ik

V

 

j

 

 

 

j

 

 

j

 

 

j

 

 

 

j! (xx x0x0

 

3

0

eikjx x0j +j! ex j x0j ! d3x0

 

Z

 

 

 

 

 

 

 

 

 

)

 

(x

 

x )

 

ik x

x0

 

 

 

 

 

 

 

 

 

j

 

 

 

j

 

 

 

 

j

j

d3x0

(7.21)

Using the triple product “bac-cab” Formula (F.51) on page 166 backwards, and inserting the resulting expression for I! into Equation (7.17) on the previous page, we arrive at the following final expression for the Fourier transform of the total E field:

 

 

1

 

 

rZV !(x0)

ik x

 

x0

 

 

 

 

 

 

 

i 0!

ZV j!(x0)

 

ik x

x0

 

E!(x) =

 

 

e j j

d3x0 +

e j j

d3x0

4 "0

x x0

4

x x0

= 4 1"0 ZV

 

 

 

 

 

 

 

 

j

 

 

 

j

 

 

0

 

d3x0

 

 

 

 

 

 

 

 

 

 

 

j

 

j

 

 

 

!(x0)ex j x0 j3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ik x

x0

 

(x

 

 

x

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j

 

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

ZV

[j

!

(x

)eik x

 

x0

 

 

(x

 

x

)](x

 

 

 

x

)

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

0

 

 

j j

x0

4

 

0

 

 

 

 

 

 

 

0

 

d3x0

 

 

(7.22)

 

 

c

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j

 

 

 

 

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

[j

!

(x

)eik x

x0

 

 

 

 

x x

)]

 

 

 

(x

 

x

)

 

 

 

 

 

 

 

+

 

 

ZV

 

 

 

0

 

 

j

 

 

jx

(x0 4

0

 

 

 

 

 

 

 

 

0

 

d3x0

 

 

 

 

 

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ic

ZV

 

 

 

!

0

 

j

j

 

 

 

j

 

0

 

 

 

 

 

 

 

0

 

d3x0

 

 

 

 

 

 

 

 

 

 

 

jx

 

x0 3

 

 

 

 

 

 

 

 

 

 

 

k

 

 

[j

 

(x

)eik x

 

x0

 

 

(x x

 

)]

 

 

 

(x

 

 

x

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j

 

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taking the inverse Fourier transform of Equation (7.22), once again using the vacuum relation ! = kc, we find, at last, the expression in time domain for

Downloaded from http://www.plasma.uu.se/CED/Book

Draft version released 31st October 2002 at 14:46.

i

i

i

Соседние файлы в предмете Физика