Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
геодезия ответы.docx
Скачиваний:
210
Добавлен:
11.05.2015
Размер:
591.9 Кб
Скачать

Общая часть.

1. Предмет и задачи инженерной геодезии

Геодезия - наука,  изучающая форму и размеры Земли, геодезические приборы, способы измерений и изображений земной поверхности на планах, картах,  профилях и цифровых моделях местности. В современной геодезии находят применение новейшие измерительные средства, используют последние достижения в физике, механике, электронике, оптике, вычислительной технике.  По разнообразию решаемых народнохозяйственных задач геодезия подразделяется на  ряд  самостоятельных  дисциплин,  каждая из которых имеет свой предмет изучения:

- высшая геодезия (гравимметрия, космическая геодезия, астрономическая геодезия) изучает форму и размеры Земли,  занимается высокоточными измерениями с целью определения координат отдельных точек  земной поверхности в единой государственной системе координат;

- топография и гидрография развивают методы съемки участков  земной  поверхности  и изображения их на плоскости в виде карт,  планов и профилей;

- фотограмметрия занимается обработкой фото-,  аэрофото- и космических снимков для составления карт и планов;

- картография рассматривает методы составления и издания карт;

- маркшейдерия - область геодезии, обслуживающая горнодобывающую промышленность и строительство тоннелей;

- инженерная  (прикладная)  геодезия изучает методы геодезических работ,  выполняемых при изысканиях,  проектировании,  строительстве  и эксплуатации различных  зданий и сооружений,  а также рациональном использовании и охране природных ресурсов.

Задачами инженерной геодезии являются:

     1) топографо-геодезические изыскания различных участков, площадок  и  трасс  с  целью составления планов и профилей;

     2) инженерно-геодезическое проектирование - преобразование  рельефа  местности  для инженерных целей,  подготовка геодезических данных для строительных работ;

     3) вынос проекта в натуру,  детальная разбивка осей зданий и сооружений;

     4) выверка  конструкций и технологического оборудования в плане и по высоте, исполнительные съемки;

     5) наблюдения за деформациями зданий и сооружений.

При топографо-геодезических изысканиях  выполняют:

     а) измерение  углов  и расстояний на местности с помощью геодезических приборов (теодолитов, нивелиров, лент, рулеток и др.);

     б) вычислительную (камеральную) обработку результатов полевых измерений на ЭВМ;

     в) графические  построения  планов,  профилей,  цифровых  моделей местности (ЦММ).

2. Форма и размеры Земли.

Первоначальное представление о фигуре З. — шар (Пифагор). З., вращаясь вокруг оси, имеет сжатие, форму, близкую к эллипсоиду.

Ур-ная пов-сть — выпуклая линия, в каждой точке к-рой направление силы тяж. перпенд-но к этой ур-ной пов-сти (напр-е силы тяж. — отвесная линия).

Пов-сть Геоида — ур-ная пов-сть, совпадающая с пов-стью морей и океанов в спокойном их состоянии и мысленно продолженная под материками.

Земной эллипсоид — элл., харак-щий форму и размеры З. вообще.

Референц-элл. — земной элл., к-рый принят для обработки геод. изм. и уст-я системы геод. координат (реф.-элл. Красовского) (а=6 378 245 м, α=(а-b)/а=1/298,3, b= 6 356 863 м, где а и b - большая и малая полуоси элл., α — полярное сжатие.

За фигуру Земли принимают геоид. Геоид — фигура ограниченная уровневой поверхностью совпадающей с поверхностью Мирового океана в состоянии полного покоя и мысленно продолженной под материками. Поверхность геоида отличается от физической поверхности Земли. Поверхность геоида в каждой ее точке перпендикулярна направлению отвесной линии.

Геоид сложная фигура, поэтому перешли от него к поверхности эллипсоида вращения. R-земли - ~6371 км, 1 градус на экваторе = 111 км, 1’=1 морской миле 18 км.

3-4. Система географических координат.

Величины определяющие положение точки в пространстве, на плоскости, на др. поверхности относительно начальных или исходных линий поверхности наз. Координатами. В инж. Геодезии применяют следующие системы координат:географические , геодезические, прямоугольные полярные и зональная система прямоугольных координат Гаусса

Географическая: уравенная поверхность принимается за поверхность сферы. Положение каждой точки на сферической поверхности земли определяется широтой и долготой . геогр. Широтой точки наз угол (0-90) между отвесной линией проходящей через точку и линией экватора. Геогр долготой (0-360) точки наз. Двугранный угол между плоскостью начального меридиана и плоскостью мередиана данной точки.

Геодезические: и относится к поверхности эллипсоида поверхности . Положение точки определяется геодезической широтой и долготой. Геод широтой — наз угол образуемый нормальной поверхностью эллепсоида и плоскостью экватора. Геод. Долготой наз — угол образ. Плоскостями начального меридиана и меридиана данной точки. Геод координаты нельзя измерить на местности. И х вычисляют по результатам геодез. Измерений наместности спроец на поверрхн эллепсоида.

Прямоугольная:Систему образуют две взаимно перпендикулярные оси,лежащие в горизонт плоскости (образуются четверти).причем Х совмещают с меридианом точки.

Полярная система координат представляет собой произвольно выбранную линию которая наз. Полорная ось , начальная точка оси — полюс

Зональная система прямоугольных координат Гаусса:сетку переносят со сферической поверхности Земли на плоскость (картографическое проецирование) цилиндра,поецируемую часть Земли ограничивают меридианами с разностью долгот от 6 до 3.-этот участок Земли-зона.меридиан-х экватор-у.

5. Прямоугольная система координат Гаусса-Крюгера.

В основу  этой  системы положено поперечно-цилиндрическая равноугольная проекция Гаусса-Крюгера  (названа  по  имени  немецких  ученых ее предложивших). В этой проекции поверхность земного эллипсоида меридианами делят на шестиградусные зоны и номеруют с 1-й по 60-ю от Гринвичского меридиана  на восток (рис.7).  Средний меридиан шестиугольной зоны принято называть осевым. 

Рис.7.Зональная система прямоугольных координат

Его совмещают с внутренней поверхностью цилиндра  и  принимают  за ось абсцисс.  Чтобы избежать отрицательного значения ординат (у), ординату осевого меридиана принимают не за нуль,

а за 500 км,  т.е. перемещают на запад на 500 км. Перед ординатой указывают номер зоны.

Например, запись координат XМн=6350 км, YМн=5500 км указывает, что  точка  расположена  в  5-й  зоне  на  осевом меридиане (λМн=27? СШ, φМн=54? ВД).  Для приближенных расчетов при переходе от географических к прямоугольным зональным координатам считают, что 1? соответствует 111 км (40000км/360? ).

6.

СИСТЕМЫ КООРДИНАТ И ВЫСОТ, ПРИМЕНЯЕМЫЕ В ГЕОДЕЗИИ.

Координатами называются угловые или линейные величины, определяющие положение точек на плоскости, поверхности или в пространстве относительно направлений и плоскостей, выбранных в качестве исходных в данной системе координат.

Астрономическая система координат. Астрономическими координатами являются широта и долгота, определяющие положение точек на поверхности геоида относительно плоскости экватора и плоскости одного из меридианов, принятого за начальный (рис. 4).

Астрономической широтой называется угол, образованный отвесной линией МО, проходящей через данную точку М и плоскостью QCDQfi, перпендикулярной к оси вращения Земли.

Плоскость астрономического меридиана — плоскость, проходяшая через отвесную линию МО в данной точке и параллельная осИ вращения Земли. Астрономический меридиан — линия пересечения поверхности геоида с плоскостью астрономического меридиана. Астрономической долготой км называется двугранный угол между плоскостью астрономического меридиана, проходящего через данную точку, и плоскостью Гринвичского меридиана РСРхО, принятого за начальный.

Геодезическая система координат. В этой системе за поверхность, на которой находят положения точек, принимается поверхность референц-эллипсоида. Положение точки на поверхности референц-эллипсоида определяется двумя угловыми величинами — геодезической широтой В и геодезической долготой L. Плоскость геодезического меридиана — плоскость, проходящая через нормаль к поверхности земного эллипсоида в данной точке и параллельная его малой оси. Геодезический меридиан — линия, по которой плоскость геодезического меридиана пересекает поверхность эллипсоида. Геодезическая параллель — линия пересечения поверхности эллипсоида плоскостью, проходящей через данную точку и перпендикулярной к малой оси. Геодезическая широта В — угол, образованный нормалью к поверхности эллипсоида в данной точке и плоскостью экватора. Геодезическая долгота L — двугранный угол между плоскостью геодезического меридиана данной точки и плоскостью начального геодезического меридиана.

Рассмотрим взаимное расположение отвесных линий и нормалей к поверхности референц-эллипсоида (рис. 5). Угол е — уклонение отвесных линий от нормалей к поверхности эллипсоида — в среднем составляет 3—4", а в отдельных районах — до десятков секунд. Следует иметь в виду, что одной секунде на поверхности эллипсоида соответствует около 31 м расстояния. Поэтому координаты одной и той же точки в астрономической и геодезической системах могут различаться до 100 м и более.

Существует также название — географические координаты — это обобщенное понятие об астрономических и геодезических координатах, когда уклонения отвесных линий не учитывают.

Прямоугольная система координат. В геодезии принята правая система прямоугольных координат (рис. 6) с нумерацией четвертей по ходу часовой стрелки. Осями координат являются две взаимно перпендикулярные прямые линии, одна из которых принята за ось абсцисс х, вторая — за ось ординат у.

Пересечение осей координат называется началом координат О. Абсциссы положительны от начала координат к северу, отрицательны — к югу. Ординаты положительны от начала координат к востоку, отрицательны — к западу.

Положение точки на плоскости (бумаге) в этой системе координат определяется величинами перпендикуляров, опущенных из этой точки на координатные оси, т. е. абсциссой х и ординатой у.

Полярная система координат. Положение точки т относительно полюса О и полярной оси ОХ определяется двумя величинами: углом (5 и расстоянием D (рис. 7 ,а). Биполярная система координат. Положение точки на плоскости в этой системе координат определяется углами и /Зг (рис. 7,6) или расстояниями и Dv

Система высот. Для определения положения точки, находящейся на физической поверхности Земли относительно уровенной поверхности, необходима третья координата — высота.

Высотой точки А (или В) называется расстояние по отвесной линии Аа (Bb) между этой точкой и уровенной поверхностью, принятой за начало счета высот (рис. 8). Высоты бывают абсолютные и относительные.

В нашей стране с 1946 г. счет абсолютных высот ведется от нуля Кронштадтского футштока, соответствующего среднему уровню Балтийского моря в спокойном его состоянии (Балтийская система высот).

Высоты, отсчитанные от иной уровенной поверхности, называются относительными. Численное значение высоты точки называется отметкой точки. Разность высот двух точек, называется превышением/!.

Превышение h точки В над точкой А, равное разности высот точек А и В, определяется по формуле h = Нв-НА.

Геодезические измерения, в результате которых определяются высоты точек местности, называют нивелированием.

7. Ориентирование линий. Азимуты, румб, дирекционный угол

Ориентировать линию на местности - значит определить ее направление относительно  некоторого начального направления.  Для этого служат азимуты А,  дирекционные углы α,  румбы r. За начальные принимают направления истинного меридиана Nи, магнитного меридиана Nм и направление Nо, параллельное осевому меридиану или оси Х системы прямоугольных координат (рис.8.1).

Азимутом называют горизонтальный угол,  отсчитываемый от северного направления меридиана по ходу часовой стрелки до  ориентируемого  направления. Азимуты изменяются в 0?  до 360?  и бывают истинными или  магнитными.  Истинный  азимут  А отсчитывается от истинного меридиана,  а магнитный Ам - от магнитного.

Дирекционный угол  α  - это горизонтальный угол,  отсчитываемый от северного направления осевого меридиана  или  линии  параллельной  ему (+Х) по ходу часовой стрелки до направления ориентируемой линии.

Рис.8.1. Ориентирование линии ОМ на местности

Угол δ, отсчитываемый от северного направления истинного меридиана N до магнитного меридиана Nм, называется склонением магнитной стрелки.Склонение северного конца магнитной стрелки к западу называют западным и считают отрицательным -δ, к востоку - восточным и положительным +δ.

Угол γ между северными направлениями истинного N и параллелью осевого  Nо  меридианов называется зональным сближением меридианов.  Если параллель осевого меридиана расположена восточнее истинного меридиана, то  сближение  называется восточным и имеет знак плюс.  Если сближение меридианов западное,  то его принимают со знаком минус.  Если известны долготы меридианов, проходящих через точки А и В, то сближение меридианов можно найти по приближенной формуле:

γ = Δλ sin φ,   (8)

где Δλ- разность долгот меридианов, проходящих через точки А и В.

Из формулы (8) следует,  что на экваторе (φ=0 ) сближение меридианов γ= 0, а на полюсе (φ=90 ) γ = Δλ.

Рис.8.2. Зависимость между дирекционными углами и румбами

Румб - горизонтальный острый угол отсчитываемый от ближайшего  северного  или  южного направления меридиана до ориентируемого направления. Румбы имеют названия в соответствии с названием четверти, в которой находится линия,  т.е.:  северо-восточные СВ,  северо-западные СЗ, юго-западные ЮЗ,  юго-восточные ЮВ.  На рис.  8.2 показаны румбы линий О-СВ, О-ЮВ, О-ЮЗ, О-СЗ и зависимость между дирекционными углами и румбами этих линий.

8/Масштаб показывает, во сколько раз каждая линия, нанесенная на карту или чертёж, меньше или больше её действительных размеров. Есть три вида масштаба: численный, именованный, графический.

Масштабы на картах и планах могут быть представлены численно или графически.

Численный масштаб записывают в виде дроби, в числителе которой стоит единица, а в знаменателе — степень уменьшения проекции. Например, масштаб 1:5 000 показывает, что 1 см на плане соответствует 5 000 см (50 м) на местности.

Более крупным является тот масштаб, у которого знаменатель меньше. Например, масштаб 1:1 000 крупнее, чем масштаб 1:25 000.

Графические масштабы подразделяются на линейные и поперечные. Линейный масштаб — это графический масштаб в виде масштабной линейки, разделённой на равные части.Поперечный масштаб — это графический масштаб в виде номограммы, построение которой основано на пропорциональности отрезков параллельных прямых, пересекающих стороны угла.Поперечный масштаб применяют для более точных измерений длин линий на планах. Поперечным масштабом пользуются следующим образом: откладывают на нижней линии поперечного масштаба замер длины таким образом, чтобы один конец (правый) был на целом делении ОМ, а левый заходил за 0. Если левая ножка попадает между десятыми делениями левого отрезка (от 0), то поднимаем обе ножки измерителя вверх, пока левая ножка не попадёт на пересечение к-либо трансвенсали и какой-либо горизонтальной линии. При этом правая ножка измерителя должна находиться на этой же горизонтальной линии. Наименьшая ЦД = 0,2 мм, а точность — 0,1.

Точность масштаба — это отрезок горизонтального проложения линии, соответствующий 0,1 мм на плане. Значение 0,1 мм для определения точности масштаба принято из-за того, что это минимальный отрезок, который человек может различить невооруженным глазом. Например, для масштаба 1:10 000 точность масштаба будет равна 1 м. В этом масштабе 1 см на плане соответствует 10 000 см (100 м) на местности, 1 мм — 1 000 см (10 м), 0,1 мм — 100 см (1 м).

Масштабы изображений на чертежах должны выбираться из следующего ряда:[1]

Масштабы уменьшения

1:2; 1:2,5; 1:4; 1:5; 1:10; 1:15; 1:20; 1:25; 1:40; 1:50; 1:75; 1:100; 1:200; 1:400; 1:500; 1:800; 1:1 000

Натуральная величина

1:1

Масштабы увеличения

2:1; 2,5:1; 4:1; 5:1; 10:1; 20:1; 40:1; 50:1; 100:1

При проектировании генеральных планов крупных объектов допускается применять масштабы 1:2 000; 1:5 000; 1:10 000; 1:20 000; 1:25 000; 1:50 000. В необходимых случаях допускается применять масштабы увеличения (100n):1, где n — целое число.

9/Понятие о карте. Различие между картой и планом

В тех случаях, когда на плоскости изображают значительную территорию, нельзя пренебрегать кривизной Земли, а следует ее учитывать. На больших площадях проектирование контуров отвесными линиями производят уже не на плоскость, а на сферическую поверхность; при этом отвесные линии в различных точках земной поверхности нужно считать не параллельными между собой, а пересекающимися в центре сферы.

Сферическая поверхность не может быть развернута на плоскости без складок и разрывов, поэтому спроектированные на сферическую поверхность контуры местности не могут быть перенесены на плоскость бумаги с сохранением подобия, т. е. без искажений. Задача при этом состоит не в полном устранении искажений, что невозможно, а в уменьшении искажений и в математическом определении их значений с тем, чтобы по искаженным изображениям можно было с помощью вычислений получать действительные величины. Построенные ПО Определенным математическим законам уменьшенные изображения на плоскости значительных частей земной поверхности, размеры которых не позволяют пренебрегать кривизной Земли, называются картами.

При создании карт прежде всего строят географическую сеть меридианов и параллелей, называемую картографической сеткой, внутри которой располагают изображаемые контуры.

Картографическая сетка служит внешним признаком, отличающим карту от плана. Существенное же различие между картой и планом состоит в следующем:

1. план - это изображение проекций небольших участков земной поверхности на горизонтальную ПЛОСКОСТЬ; карта - изображение проекций больших территорий Земли на сферическую поверхность;

2. длины, углы и площади контуров горизонтальной проекции на плане не искажаются, а на картах, вообще говоря, искажаются.

Другими словами, масштаб плана остается постоянным для всех частей плана. На картах же и в особенности на тех, которые изображают всю Землю или большую часть ее поверхности, масштаб меняется не только в различных частях карты, но и по различным направлениям, выходящим из одной точки.

При построении карты предполагают, что поверхность Земли изображается сначала на глобусе определенного размера, а затем уже с его поверхности переносится на плоскость.

Вдоль одной или нескольких линий (меридианов, параллелей или других линий) масштаб картографической сетки равен масштабу глобуса, служащего основанием для построения карты. Этот масштаб называется главным. В других частях сетки масштабы будут иные. Их называют частными.

Чем меньше часть земной поверхности, которую охватывает карта, тем ближе карта по своим свойствам к плану и тем меньше уклонения частных масштабов от главного. Значительные уклонения частных масштабов от главного имеют географические карты, которые охватывают большие территории; они дают обобщенную характеристику местности и составлены в очень мелких масштабах. Топографические карты, служащие для подробного ознакомления с местностью, составляемые в более крупных масштабах и охватывающие на отдельных листах сравнительно небольшие территории, по своим свойствам весьма близки к планам.

Влияние масштаба на содержание и использование карт так велико, что карты принято классифицировать по масштабам, различая карты крупного, среднего и мелкого масштабов. Такое деление условно. В советской практике принято считать крупномасштабными карты масштабов 1:100000 и крупнее, среднемасштабными — от 1:200000 до 1:1000000 и мелкомасштабными— мельче 1:1000000.

Крупномасштабные карты называются топографическими. Это наиболее подробные карты с изображением на них контуров и рельефа земной поверхности.