Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
12 раздел.doc
Скачиваний:
11
Добавлен:
11.05.2015
Размер:
482.3 Кб
Скачать

III. Анализ деформированного состояния

Тензор деформации представим в симметричном виде (см. рис), когда и т.д. Анализ деформиро-ванного состояния проведем по аналогии с

вышеприведенным анализом напряженного состояния. Три взаимно ортогональных направления, сдвиги между которыми при деформации тела равны нулю, называются главными деформациями и обозначаются .

Главные деформации находятся из уравнения, аналогичного уравнению (12.4) для определения главных напряжений

(12.15)

Здесь и инварианты деформированного состояния:

(12.16)

Решение кубического уравнения (12.15) дает три величины главных деформаций .

В случае плоской деформации, когда, например, по аналогии с ПНС, формулы (12.10), получим и

(12.17)

Экстремальные сдвиги находятся по формулам, аналогичным (12.6) для определения экстремальных касательных напряжений

(12.18)

Для изотропных материалов направления главных деформаций совпадает с направлениями главных напряжений.

Выясним физический смысл инварианта : Рассмотрим кубик, у которого ребра совпадают с направлениями главных деформаций и до нагружения тела их длины равны 1. Его объем . После деформации его объем станет . Относительное изменение объема обозначим

Деформации малы, поэтому величины второго и третьего порядка малости можно не учитывать, тогда

(12.19)

Итак, первый инвариант деформированного состояния определяет относительное изменение объема тела.

Октоэдрический сдвиг, по аналогии с (12.7) – октаэдрических касательных напряжений, определяется так

(12.20)

Последняя формула получена с учетом (12.18)

157

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]