Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
76
Добавлен:
21.04.2015
Размер:
174.59 Кб
Скачать

Лекция 5

1.12. Нелинейные электрические цепи постоянного тока

В предыдущих параграфах были рассмотрены линейные цепи, т. е. цепи, сопротивление которых постоянно и не зависит от напряжения и тока. Зависимость тока в элементах цепи от напряжения I = f(U) выражают графически в виде вольт-амперных характеристик. Вольт-амперные характеристики линейных элементов цепи представляют собой прямые линии, проходящие через начало координат (у этих элементов сопротивление r = const). Строго говоря, элементов с линейной зависимостью I (U) не существует. Однако, когда эта нелинейность незначительна, цепь можно рассматривать как линейную. В нелинейных элементах с изменением тока их сопротив­ление меняется и зависимости I(U) получаются нелинейными.

В различных отраслях техники имеют большое практическое значение электрические цепи, нелинейность которых выражена очень резко. Такие цепи широко используют в устройствах автоматики, вычислительной техники, радиоэлектроники, в измерительной технике и т. д. К нелинейным элементам цепей можно отнести, например, различные электронные, ионные, фотоэлектронные и полупроводнико­вые приборы, а также ряд других устройств. С помощью нелинейных элементов можно усиливать электрические сигналы, генерировать сигналы различной формы, производить вычислительные операции, преобразовывать переменный ток в постоянный, осуществлять стабилизацию тока и напряжения и т. д.

В зависимости от вида кривых вольт-амперных характеристик нелинейные элементы электрических цепей можно подразделить на элементы с симметричными (рис. 1.23, кривая 2) и с несимметричными характеристиками (рис. 1.23, кривая 1). Для нелинейных элементов с симметричными характеристиками вид вольт-амперных характеристик не зависит от направления тока в них и напряжения на их зажимах, поэтому такие элементы можно применить в цепях как постоянного, так и переменного тока. Иначе говоря, элементами с симметричными характе­ристиками можно назвать нелинейные элементы, у которых сопротивления не зависят от направления тока.

У нелинейных элементов с несимметричными характеристиками сопротивление зависит от направления тока и вольт-амперные харак- теристики имеют неодинаковый вид при изменении направлений тока. Несимметричными характеристиками обладают, в частности, различные электронные и полупроводниковые приборы. Нелинейные элементы, у которых можно изменять вольт-амперную характеристику, называют управляемыми. К ним можно отнести, например, многоэлектродные электронные лампы, транзисторы, тринисторы.

Рассчитывают электрические цепи с нелинейными элементами гра-фически или аналитически. Графический метод наиболее распространен при подборе электронных ламп и полупроводниковых приборов. Аналитический метод применяют в том случае, когда вольт- амперные характеристики можно с достаточной степенью точности выразить аналитическими функциями. Для расчета нелинейных электрических цепей также применимы законы Ома и Кирхгофа, однако расчет цепей в этом случае значительно сложней, чем линейных. Эта связано с тем, что помимо токов и напряжений в нелинейных цепям неизвестными являются также сопротивления нелинейных элементов. При расчете нелинейных цепей наиболее часто применяется графический метод, который заключается в предварительной замене рассматриваемой цепи эквивалентной схемой с результирующей (эквивалентной) вольт-амперной характеристикой, а затем в обратном переходе к исходной цепи. Если при расчете нелинейной цепи вольт-амперную xapaктеристику нелинейного элемента в некоторых пределах можно заменить прямой линией, то расчет можно свести к расчету линейной цепи.

При расчете нелинейных цепей различают два вида сопротивлений: статическое и дифференциальное. Статическое сопротивление r в точке d (рис. 1.23) есть отношение напряжения в данной точке (отрезок сd) к току (отрезком oc):

где mr = тU/mIмасштаб сопротивления.

Таким образом, статическое сопротивление пропорционально тангенсу угла α между прямой, соединяющей точку d с началом координат, и осью токов.

Дифференциальное сопротивление гд - предел отношения приращения напряжения на нелинейном элементе к приращению тока в нем, когда последнее стремится к нулю. Иными словами, это производная от напряжения по току в масштабе тr. Дифференциальное сопротивление пропорционально тангенсу угла β между касательной в данной точке d рассматриваемой характеристики и осью токов:

Применяют также понятие дифференциальной проводимости нелинейного элемента:

Следует отметить, что для линейных участков вольт-амперных характеристик дифференциальное сопротивление есть отношение конечного приращения напряжения к конечному приращению тока: rд = ∆U / ∆I.