Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вибрация.doc
Скачиваний:
30
Добавлен:
17.04.2015
Размер:
249.34 Кб
Скачать

1.3. Методы борьбы с вибрацией

Общими методами снижения вибрации являются;

  • ослабление вибрации в источнике их образования за счет конструктивных, технологических и экспериментальных решений (технический метод);

  • снижение интенсивности вибраций на пути их распространения (технологический метод);

Устранение причин возникновения вибрации в машинах и механизмах конструктивными и технологическими решениями является наиболее рациональной мерой (устранение дисбаланса, люфтов, зазоров, замена кривошипно-шатунных механизмов на кулачковые и т.д.). Ослабление вибрации в источнике их образования осуществляется при изготовлении оборудования.

Снижение интенсивности вибрации на пути распространения можно осуществить демпфированием, динамическим гашением и виброизоляцией.

Виброизоляция - способ защиты от вибрации, заключающийся в уменьшении передачи вибрации от источников возбуждения защищаемому объекту при помощи дополнительных устройств упругой связи - фундаментов и виброизоляторов, помещаемых между ними. Эта упругая связь может использоваться для ослабления передачи вибрации от основания на человека либо на защищаемый агрегат.

Виброизоляторы бывают пружинными, резиновыми и комбинированными. Пружинные виброизоляторы по сравнению с резиновыми виброизоляторами имеют рад преимуществ, так как могут применяться для изоляции как низких, так и высоких частот, а также дольше сохраняют упругие свойства. В случае пропускания виброизоляторами высших частот (из-за малых внутренних потерь сталей), их устанавливают на прокладки из резины (комбинированный виброизолятор). Цельные резиновые прокладки должны иметь форму ребристых или дырчатых плит для обеспечения деформации в горизонтальной плоскости.

Виброизоляция также осуществляется применением гибких вставок в коммуникациях воздуховодов, несущих конструкциях зданий, в ручном механизированном инструменте.

Основным показателем, определяющим виброизоляции машины, агрегата, установленной на виброизоляции с определенной жесткостью и массой, является коэффициент передачи или коэффициент виброизоляции. Он показывает, какая доля динамической силы [FФ] или ускорения [WФ] от общей силы [Fмаш] или ускорения [Wмаш] действующих со стороны машины, передается виброизоляторами фундаменту или основанию.

где f = ω/2π - частота возмущающей силы; в случае неуравновешенности ротора машины (электродвигателя, вентилятора и т.д.).

f =nm/60, где n - частота вращения, об/мин., m - номер гармоник (m = , 2, 3, …) могут бить и другие частоты возмущающих сил.

Частота собственных колебаний машины

где xcтат = mg/c - статическая осадка виброизолятора (пружины, резины) под действием собственной массы М машины, см. Ее можно определить – xcтат = g /(2πf0)².

Чем больше статическая осадка, тем ниже собственная частота и тем эффективнее виброизоляция.

Изоляторы - амортизаторы начинают приносить эффект (КП<1)лишь при частоте возмущения fэф > f =

При f ≤ виброизоляторы передают полностью вибрации фундаменту (КП=1)или даже усиливают их (КП>1). Эффект виброизоляции тем выше, чем больше отношение f/f0.

Следовательно, для лучшей виброизоляции фундамента от вибрации машин при известной частоте возмущающей силы f необходимо уменьшить частоту собственных колебаний машины на виброизоляторах f0 для получения больших отношений f/f0, что достигается либо увеличением массы машины [M], либо снижением жесткости виброизоляции "c". При известной же собственной частоте f0 - эффект виброизоляции будет выше, чем больше возмущающая частота f по сравнению с частотой f0.

Виброизоляция будет эффективней, если фундамент, на котором монтируется агрегат, обладает достаточной массивностью. Это требование выполняется в тех случаях, когда выполняется условие

(fp2/f 2- 1)M/4m > 10,

где fp - ближайшая к частоте вынуждающей силы собственная частота колебаний фундамента; М - масса фундамента (кг); m - масса изолирующего агрегата (кг).

Значение КП для эффективной изоляции колеблется в пределах 1/8  1/6 при отношении вынужденной частоты к собственной частоте системы, равном 3 - 4.

Для изоляции человека от вибрирующего оборудования используют виброгашение. Под виброгашением понимают уменьшение уровня вибрации защищаемого объекта при введении в систему дополнительных реактивных сопротивлений. Чаще - это достигается при установке агрегатов на виброгасящие основания. Массу фундамента подбирают таким образом, чтобы амплитуда колебаний подошвы фундамента в любом случае не превышала 0,1-0,2 мм, а для особо ответственных сооружений - 0,005 мм.

Ослабление передачи вибрации на фундамент обычно характеризуется величиной виброизоляции (ВИ).

ВИ = ∆Z = Z01-Z02 =

Но чаще в качестве критерия параметра вибрации используется амплитуда колебания. Она используется для ограничения вибрации агрегатов и фундаментов - определяет действующие динамические силы.

ВИ = ∆Z =

где знак "1" - относится к параметрам вибрации до мероприятий, а "2" - после мероприятий, после виброзащиты.

ВИ = ∆Z =

Если известен уровень колебательной скорости агрегата и нормированное значение уровня виброскорости Zнорм, то можно определить потребную величину снижения логарифмического уровня виброскорости ∆Z = Z - Zнор.

Далее определяется потребное значение КП

Вибродемпфирование - вибропоглощение - процесс уменьшения уровня вибрации защищаемого объекта путем превращения энергии механических колебаний колеблющейся системы в тепловую энергию в процессе рассеяния энергии в окружающее пространство, а также в материале упругих элементов. Эти потери вызываются силами трения – диссипативными силами, на преодоление которых непрерывно и необходимо расходуется энергия источника вибрации.

Если рассеяние энергии происходит в вязкой среди, то диссипативная сила прямо пропорциональна виброскорости и носит название демпфирующей.

Вибродемпфирование заключается в уменьшении уровня вибрации защищаемого объекта за счет превращения энергии механических колебаний колеблющейся системы в тепловую.

связь между виброскоростью и вынуждающей силой, где Fm - вынуждающая сила;

μ - коэффициент сопротивления, активная составляющая сопротивления вибрации;

(mω - с/ω)- реактивная часть сопротивления;

mω - инерционное сопротивление (масса на угловую частоту);

с/ω - упругое сопротивление (коэффициент жесткости на угловую частоту);

- механический импеданс системы.

Вибродемпфирование определяется коэффициентом сопротивления системы "μ", с изменением которого изменяется механический импеданс системы. Чем выше , тем большего эффекта вибродемпферования можно достичь.

Для вибродемпфирования используются материалы с большим внутренним трением (пластмассы, дерево, резина и др.). На вибрирующие поверхности накосятся упруговязкие материалы - мастики.

Для борьбы с акустической вибрацией систем вентиляции и кондиционирования воздуха воздуховоды присоединяются к вентиляторам через гибкие вставки, при переходе через строительные конструкции на воздуховоды надеваются амортизирующие муфты и прокладки.

Вибродемпфирование осуществляется:

- путем изготовления колеблющихся объектов из материалов с высоким коэффициентом потерь, т.е. из композиционных материалов: двухслойных - "сталь-алюминий", из сплавов Cu – Ni, Ni – Co, а также на металле пластмассовые покрытия и т.д. Вибродемпфирующие материалы характеризуются коэффициентом потерь "η": сплавы "Cu - Ni" - 0,02-0,1; слоистых материалов - 0,15-0,40; резин, мягких пластмасс – 0,05 - 0,5; мастик - 0,3 - 0,45.

- нанесением на колеблющиеся объекты материалов с высоким коэффициентом потерь.

Действие таких покрытий основаны на ослаблении вибрации переводом колебательной энергии в тепловую при деформации покрытий.

Вибропоглащающие покрытия делятся на жесткие и мягкие покрытия.

Жесткие – рубероид, пластмасса, битомизированный войлок, стеклоизоляция.

Мягкие – мягкие пластмассы, резина, пенопластмассы.

Мастики – Антивибрит, ВД 17 – 58.

Динамическое гашение - виброгашение - ослабление колебаний посредством присоединения к системе дополнительных реактивных импедансов - дополнительная колебательная система, собственная частота, которой настроена, на основную частоту агрегата. В этом случае подбором массы и жесткости виброгасителя снижают вибрацию.

В направлении распространения вибрацию снижают, используя дополнительные устройства, встраиваемые в конструкцию машины, применяя демпфирующие покрытия, а также используя антифазную синхронизацию двух или нескольких источников возбуждения.

Средства динамического виброгашения по принципу действия подразделяются на динамические (пружинные, маятниковые, действующие в противофазе к колебательной системе) и ударные (пружинные, маятниковые - как глушители шума).

Динамическое виброгашение осуществляется также при установке агрегата на массивном фундаменте.

Виброгаситель жестко крепится на вибрирующем агрегате, поэтому в каждый момент времени возбуждаются колебания, находящиеся в противофазе к колебаниям агрегата.

Без учета трения должно выполняться условие:

где f - частота собственных колебаний машины (агрегата); f0 - возбуждающаяся частота.

Недостатком динамического гашения является то, что гасители действует только по определенной частоте, соответствующей его резонансному режиму колебания: маятниковые или ударные виброгасители для гашения колебаний с частотой 0,4 - 2,0 Гц; пружинные - 2,0 - 10,0 Гц; плавающие – выше 10 Гц.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]