Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
гарсков 01-10 блеа нью вёршн.docx
Скачиваний:
26
Добавлен:
11.04.2015
Размер:
1.39 Mб
Скачать

Подходы второго порядка к выделению границ

Некоторые операторы выделения границ вместо работы с градиентом используют вторые производные яркости изображения. Это естественным образом определяет силу изменения градиента. Таким образом, в идеальном случае, обнаружение нулей второй производной позволит обнаружить локальные максимумы градиента.

Оператор Марра-Хилдрета основан на вычисления корней оператора Лапласа, примененного к изображению, сглаженному фильтром Гаусса. Однако, было показано, что этот оператор выделяет ложные границы на однородных участках изображения, где градиент имеет локальный минимум. К тому же этот оператор плохо локализовывал скругленные края. Поэтому данный оператор представляет сейчас скорее историческую ценность.

Дифференциальное выделение границ Подходы, основанные на согласованности фаз

 сегментация — это процесс разделения цифрового изображения на несколько сегментов (множество пикселей, также называемых суперпикселями). Цель сегментации заключается в упрощении и/или изменении представления изображения, чтобы его было проще и легче анализировать.[1] Сегментация изображений обычно используется для того, чтобы выделить объекты и границы (линии, кривые, и т. д.) на изображениях. Более точно, сегментация изображений — это процесс присвоения таких меток каждому пикселю изображения, что пиксели с одинаковыми метками имеют общие визуальные характеристики. Результатом сегментации изображения является множество сегментов, которые вместе покрывают всё изображение, или множество контуров, выделенных из изображения (см. Выделение границ). Все пиксели в сегменте похожи по некоторой характеристике или вычисленному свойству, например по цвету, яркости или текстуре. Соседние сегменты значительно отличаются по этой характеристике.[1]

  1. Сжатие объема звуковой информации. Форматы сжатия WMA, MP3, OGG, AAC

Сжатие звука — совокупность технологий по уменьшению объема данных, необходимых для передачи и хранения звуковой информации. Базируясь на основных принципах сжатия информации, при сжатии звука используются особенности звуковой информации, особенности природы, механизмов проихождения звука (речь, музыкальные инструменты и т.д.) и звуковосприятия.

Звук представляет собой аналоговый сигнал, непрерывный во времени и принимающий произвольные неограниченные величины. Сигналы, которыми оперирует цифровая техника, являются дискретными и принимают конечное число значений. Для того, чтобы иметь возможность передавать, хранить и обрабатывать звук посредством цифровой техники необходимо преобразование его цифровой вид - квантование. При квантовании с аналогового сигнала производятся выборки через определенные промежутки времени (временное квантование), а затем сопоставление каждой выборке конечной дискретного значения — цифрового кода (квантование величины). Такое представление имеет название импульсно–кодовая модуляция (ИКМ). Обратное преобразование производится в обратном порядке: цифровое представление → сопоставление коду действительной величины → интерполяция отсчетов → аналоговый сигнал. Практически все методы сжатия используют в качестве исходного представления ИКМ.

Человек преимущественно воспринимает и анализирует частотный спектр звука, поэтому практически все универсальные методы сжатия с потерями используют кодирование частотного спектра звука. Для получения спектра используются: банки фильтров (MPEG Audio Layer I,II; DTS), дискретное косинусное преобразование (MP3, AAC...) и другие.

Мамчев, основы ЦТВ, стр 127-131

Ис­пользование эффекта маскировки позволяет существенно сократить объем зву­ковых данных, лалалалала

            Полосное кодирование и блок фильтров.

Рис. 4.2. Нормированная АЧХ блока фильтров

 

           

 

            Квантование и распределение битов блаблабла

 

            В декодере процессы происходят в обратном порядке. Сигнал демультиплексируется,  делением на масштабирующий множитель восстанавливаются исходные значения цифровых отсчетов в частотных полосах и поступают на объединяющий блок фильтров, который формирует на выходе поток звуковых данных, адекватный входному с точки зрения психофизиологического воспри­ятия звукового сигнала человеческим ухом.

            Вариант схемы с обратной адаптацией показан на рисунке 4.3, б.

Уровни обработки звукоданных.