Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 14.doc
Скачиваний:
12
Добавлен:
08.04.2015
Размер:
766.98 Кб
Скачать

16

Глава 14. Неопределенный интеграл, структура интегрирования. Таблица неопределённых интегралов и правила интегрирования.

§14.1. Неопределенный интеграл

14.1.1. Основные определения

Определение. Пусть определена в (конечном или бесконечном) промежутке .Функция называетсяпервообразной функцией для , если для любого выполняется равенство:.

Теорема 14.1.(Основная лемма интегрального исчисления). Если в некотором промежутке (конечном или бесконечном) функцияявляется первообразной для , то и любая функция - тоже является первообразной для. Обратно, для любой другой первообразной функции найдётся постоянная такая, что.

►Очевидно, , и первая часть теоремы доказана. Пусть - какая-либо первообразная для. Рассмотрим разность. Производная этой функции . По следствию из теоремы 7.3. Лагранжа (критерию постоянства функции на промежутке) получим, что , что и требовалось доказать. ◄

Определение. Множество первообразных функций для функции на заданном промежутке называется еёнеопределённым интегралом и обозначается так: .

По доказанной лемме, оно имеет следующую структуру: , где- произвольная первообразная функция, а- произвольная постоянная. Обычно используется обозначение, в котором правая часть равенства обозначает не одну из функций, а всё семейство функций, образующих интеграл.

14.1.2.Таблица основных интегралов

Каждая формула сразу приводит к соответствующей формуле

.

Поэтому, используя формулы для производных элементарных функций, получим следующую таблицу:

1.

2.

3. ,.

4. Эти формулы часто соединяют в одну: . При этом следует иметь в виду, что множество, на котором определена функция, состоит из двух промежутков, задаваемых неравенствамии, соответственно. На каждом из этих промежутков постоянную можно выбирать независимо, что и отражено в формуле 4. Так что формулуне следует понимать так, что к функцииприбавляется одна и та же постоянная как при , так и при. Еще раз повторим – точный смысл дан равенством 4.

Это же замечание можно сделать для формулы (3) при и таком, чтоопределена как при, так и при.

5. ,

6. ,

7. , в частности,

8. ,

9. ,

10. ,

точнее говоря, так как функция определена на бесконечном множестве промежутков ,, для каждогоследует выбирать свою постоянную(так же, как это было сделано в пункте 4).

11. ,

разумеется, замечание, аналогичное сделанному в пункте 10, справедливо и здесь.

14.1.3.Правила интегрирования

Доказательства всех приведённых ниже утверждений получаются в результате вычисления производных от обеих частей доказываемых равенств.

1. Если, то

.

Замечание. Условие существенно для справедливости этого равенства. При левая часть этого равенства представляет собой множество постоянных функций, а множество в правой части состоит только из тождественно равной нулю функции, притом при условии, что имеет первообразную функцию.

2. .

3. Если , где - непрерывная функция, то для любой функции, такой, чтои- непрерывные функции, и такой, что- определена, имеет место равенство

.

Это правило замены переменной сразу следует из теоремы о производной сложной функции.

4. Пусть и- непрерывные функции и пусть,- тоже непрерывные функции. Тогда

.

Формула, называемая формулой интегрирования по частям, вытекает из формулы для производной произведения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]