Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вероятность 5.doc
Скачиваний:
160
Добавлен:
17.03.2015
Размер:
262.14 Кб
Скачать

50

Лекция 5

Последовательность независимых испытаний. Формула Бернулли. Локальная и интегральная теоремы Муавра-Лапласа. Теорема Пуассона.

3.6. Формула Бернулли

В научной и практической деятельности постоянно приходится проводить многократно повторяющиеся опыты в сходных условиях. При этом, как правило, результаты предшествующих опытов никак не сказываются на результатах последующих опытов. Очень важен простейший тип таких опытов, когда в каждом из испытаний некоторое событие А может появляться с одной и той же вероятностью p и эта вероятность остается одной и той же, независимо от результатов предшествующих или последующих испытаний.

Этот тип испытаний называется схемой повторных независимых испытаний, или схемой Бернулли. Исследование таких последовательностей заслуживает особого внимания в силу их исключительного значения в теории вероятностей и ее приложений.

Изучение многих проблем в производстве, экономике, социологии и других отраслях науки и техники требует организации длительных наблюдений и экспериментов, т.е. организации схемы повторных испытаний. Например, особое значение схема Бернулли имеет в теории контроля. Так, перед тем как ввести в массовое производство новый тип прибора проводят многочисленные его испытания на безотказность, долговечность, простоту наладки и т.п. как раз по схеме Бернулли.

Поставим задачу в общем виде. Пусть в результате испытания возможны два исхода: либо появление события А (успех), либо не появление события  (неуспех). Проведем n испытаний Бернулли, т.е. что все n испытаний независимы и вероятность появления события А в каждом отдельном взятом испытании постоянна и от испытания к испытанию не изменяется (т.е. испытания проводятся в одинаковых условиях). Обозначим вероятность P(A) появлений события А в отдельном испытании буквой p, т.е. P(A)=p, а вероятность противоположного события P() – буквой q, т.е. P() = 1–P(A) = 1–p = q.

Найдем вероятность Pn(m) того, что событие A появится ровно m раз в n испытаниях Бернулли. Отметим, что здесь не требуется появления события А ровно m раз в строго определенной последовательности. Вероятность элементарного исхода, в котором событие А наступит ровно m раз, равна pmqn–m. Однако число таких элементарных исходов совпадает с числом способов, которыми можно выбрать m мест из имеющихся n, не учитывая порядка, т.е. равно числу сочетаний . В результате получаем, что вероятность наступленияm успехов в n независимых испытаниях равно

(3.14)

Полученное равенство называют формулой Бернулли.

Пример 3.13. Вероятность изготовления на станке-автомате нестандартной детали равна 0,02. Какова вероятность того, что среди наудачу взятых шести деталей окажется более четырех стандартных?

Решение. Вероятность того, что наудачу взятое изделие окажется нестандартным равна q=0,02. Вероятность того, что изделие окажется стандартным равна p=1–q=0,98. Поскольку эти вероятности постоянны и не изменяются от испытания к испытанию, то для подсчета вероятности можно применить формулу Бернулли. Появление более четырех стандартных изделий означает, что среди 6 взятых деталей окажутся 5 или 6 стандартных. Следовательно

= 50,9850,021 + 10,9860,020  0,9943.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]