Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

3 курс / Патологическая физиология / АКТИН_МИОЗИНОВОЕ_ВЗАИМОДЕЙСТВИЕ_В_МИОКАРДЕ_В_НОРМЕ_И_ПРИ_ХРОНИЧЕСКОЙ

.pdf
Скачиваний:
0
Добавлен:
24.03.2024
Размер:
1.2 Mб
Скачать

chain phosphorylation affects the structure of rabbit skeletal muscle thick

filaments // Biophys. J.– Elsevier, 1996.– Vol. 71, № 2.– P. 898–907.

72.Colson B.A., Locher M.R., Bekyarova T., Patel J.R., Fitzsimons D.P., Irving T.C., Moss R.L. Differential roles of regulatory light chain and myosin binding protein-C phosphorylations in the modulation of cardiac force development // J. Physiol.– 2010.– Vol. 588, № 6.– P. 981–993.

73.Kampourakis T., Irving M. Phosphorylation of myosin regulatory light chain controls myosin head conformation in cardiac muscle // J. Mol. Cell. Cardiol.– Elsevier B.V., 2015.– Vol. 85.– P. 199–206.

74.Stelzer J.E., Patel J.R., Moss R.L. Acceleration of stretch activation in murine myocardium due to phosphorylation of myosin regulatory light chain // J. Gen. Physiol.– 2006.– Vol. 128, № 3.– P. 261–272.

75.Kampourakis T., Sun Y.B., Irving M. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments // Proc. Natl. Acad. Sci. U. S. A.– 2016.– Vol. 113, № 21.– P. E3039–E3047.

76.Li M., Ogilvie H., Ochala J., Artemenko K., Iwamoto H., Yagi N., Bergquist J., Larsson L. Aberrant post-translational modifications compromise human myosin motor function in old age // Aging Cell.– 2015.– Vol. 14, № 2.– P. 228–235.

77.Kopp S.J., Barany M. Phosphorylation of the 19,000-dalton light chain of myosin in perfused rat heart under the influence of negative and positive inotropic agents // J. Biol. Chem.– 1979.– Vol. 254, № 23.– P. 12007–12012.

78.Walker L.A., Walker J.S., Ambler S.K. B.P.M. Stage-Specific Changes in Myofilament Protein Phosphorylation Following Myocardial Infarction in Mice // J Mol Cell Cardiol.– 2010.– Vol. 48, № 6.– P. 1180–1186.

79.Toepfer C., Caorsi V., Kampourakis T., Sikkel M.B., West T.G., Leung M.C., Al-Saud S.A., MacLeod K.T., Lyon A.R., Marston S.B., Sellers J.R., Ferenczi M.A. Myosin regulatory light chain (RLC) phosphorylation change as a modulator of cardiac muscle contraction in disease // J. Biol. Chem.– 2013.–

121

Рекомендовано к изучению сайтом МедУнивер - https://meduniver.com/

Vol. 288, № 19.– P. 13446–13454.

80.Avner B.S., Shioura K.M., Scruggs S.B., Grachoff M., Geenen D.L., Helseth D.L., Farjah M., Goldspink P.H., Solaro R.J. Myocardial infarction in mice alters sarcomeric function via post-translational protein modification // Mol. Cell. Biochem.– 2012.– Vol. 363, № 1–2.– P. 203–215.

81.Dominguez R., Holmes K.C. Actin structure and function // Annu. Rev. Biophys.– 2011.– Vol. 40, № 1.– P. 169–186.

82.Копылова Г.В., Щепкин Д.В. Н.Л.В. in Vitro in Vitro // Биохимия.– 2013.–

Т. 78, № 3.– С. 348–356.

83.Yang S., Barbu-Tudoran L., Orzechowski M., Craig R., Trinick J., White H., Lehman W. Three-dimensional organization of troponin on cardiac muscle thin filaments in the relaxed state // Biophys. J.– Biophysical Society, 2014.–

Vol. 106, № 4.– P. 855–864.

84.Marston S., Zamora J.E. Troponin structure and function: a view of recent progress // J. Muscle Res. Cell Motil.– Springer International Publishing, 2020.– Vol. 41, № 1.– P. 71–89.

85.Зильбернагль С Д.А. Наглядная физиология.– Бином. Лаборатория знаний, 2013.– 408 p.

86.Brunello E., Fusi L., Ghisleni A., Park-Holohan S.J., Ovejero J.G., Narayanan T., Irving M. Myosin filament-based regulation of the dynamics of contraction in heart muscle // Proc. Natl. Acad. Sci. U. S. A.– 2020.– Vol. 117, № 14.– P. 8177–8186.

87.McKillop D.F., Geeves M.A. Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament // Biophys. J.– Elsevier, 1993.– Vol. 65, № 2.– P. 693–701.

88.Gordon A.M., Homsher E., Regnier M. Regulation of contraction in striated muscle // Physiol. Rev.– 2000.– Vol. 80, № 2.– P. 853–924.

89.Desai R., Geeves M.A., Kad N.M. Using fluorescent myosin to directly visualize cooperative activation of thin filaments // J. Biol. Chem.– 2015.–

Vol. 290, № 4.– P. 1915–1925.

122

90.Gulati J., Scordilis S., Babu A. Effect of troponin C on the cooperativity in Ca2+ activation of cardiac muscle // FEBS Lett.– 1988.– Vol. 236, № 2.– P. 441–444.

91.Houmeida A., Heeley D.H., Belknap B., White H.D. Mechanism of regulation of native cardiac muscle thin filaments by rigor cardiac myosin-S1 and calcium // J. Biol. Chem.– 2010.– Vol. 285, № 43.– P. 32760–32769.

92.Risi C., Eisner J., Belknap B., Heeley D.H., White H.D., Schröder G.F., Galkin

V.E. Ca2+-induced movement of tropomyosin on native cardiac thin filaments revealed by cryoelectron microscopy // Proc. Natl. Acad. Sci. U. S. A.– 2017.–

Vol. 114, № 26.– P. 6782–6787.

93.Barnett V.A. Cross-bridge cooperativity during isometric contraction and unloaded shortening of skeletal muscle // J. Muscle Res. Cell Motil.– 2001.–

Vol. 22, № 5.– P. 415–423.

94.Izakov V.Y., Katsnelson L.B., Blyakhman F.A., Markhasin V.S., Shklyar T.F. Cooperative effects due to calcium binding by troponin and their consequences for contraction and relaxation of cardiac muscle under various conditions of mechanical loading // Circ. Res.– 1991.– Vol. 69, № 5.– P. 1171–1184.

95.Martyn D.A., Chase P.B., Hannon J.D., Huntsman L.L., Kushmerick M.J., Gordon A.M. Unloaded shortening of skinned muscle fibers from rabbit activated with and without Ca2+ // Biophys. J.– Elsevier, 1994.– Vol. 67, №

5.– P. 1984–1993.

96.Siemankowski R.F., Wiseman M.O., White H.D. ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle // Proc. Natl. Acad. Sci. U. S. A.– 1985.– Vol.

82, № 3.– P. 658–662.

97.Homsher E., Kim B., Bobkova A., Tobacman L.S. Calcium regulation of thin filament movement in an in vitro motility assay // Biophys. J.– Elsevier, 1996.–

Vol. 70, № 4.– P. 1881–1892.

98.Stelzer J.E., Brickson S.L., Locher M.R., Moss R.L. Role of myosin heavy chain composition in the stretch activation response of rat myocardium // J.

123

Рекомендовано к изучению сайтом МедУнивер - https://meduniver.com/

Physiol.– 2007.– Vol. 579, № 1.– P. 161–173.

99.Voelkel N.F., Quaife R.A., Leinwand L.A., Barst R.J., McGoon M.D., Meldrum D.R., Dupuis J., Long C.S., Rubin L.J., Smart F.W., Suzuki Y.J., Gladwin M., Denholm E.M., Gail D.B. Right ventricular function and failure: Report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure // Circulation.– 2006.– Vol. 114, № 17.– P. 1883–1891.

100.Ho S.Y., Nihoyannopoulos P. Anatomy, echocardiography, and normal right ventricular dimensions // Heart.– 2006.– Vol. 92, № SUPPL. 1.– P. 2–13.

101.Haddad F., Doyle R., Murphy D.J., Hunt S.A. Right ventricular function in cardiovascular disease, part II: Pathophysiology, clinical importance, and management of right ventricular failure // Circulation.– 2008.– Vol. 117, №

13.– P. 1717–1731.

102.Wang N., Hung C.L., Shin S.H., Claggett B., Skali H., Thune J.J., Køber L.,

Shah A., Mcmurray J.J.V., Pfeffer M.A., Solomon S.D. Regional cardiac dysfunction and outcome in patients with left ventricular dysfunction, heart failure, or both after myocardial infarction // Eur. Heart J.– 2016.– Vol. 37, №

5.– P. 466–472.

103.Tretter J.T., Redington A.N. The Forgotten Ventricle?: The Left Ventricle in Right-Sided Congenital Heart Disease // Circ. Cardiovasc. Imaging.– 2018.–

Vol. 11, № 3.– P. 1–11.

104.Vonk Noordegraaf A., Chin K.M., Haddad F., Hassoun P.M., Hemnes A.R., Hopkins S.R., Kawut S.M., Langleben D., Lumens J., Naeije R. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update // Eur. Respir. J.– 2019.– Vol. 53, № 1.

105.Sanz J., Sánchez-Quintana D., Bossone E., Bogaard H.J., Naeije R. Anatomy, Function, and Dysfunction of the Right Ventricle: JACC State-of-the-Art Review // J. Am. Coll. Cardiol.– 2019.– Vol. 73, № 12.– P. 1463–1482.

106.Stämpfli S.F., Donati T.G., Hellermann J., Anwer S., Erhart L., Gruner C., Kaufmann B.A., Gencer B., Haager P.K., Müller H. T.F.C. Right ventricle and

124

outcome in left ventricular non-compaction cardiomyopathy // J. Cardiol.–

2020.– Vol. 75, № 1.– P. 20–26.

107.Nogueira-Ferreira R., Ferreira R., Padrão A.I., Oliveira P., Santos M., Kavazis

A.N., Vitorino R., Moreira-Gonçalves D. One year of exercise training promotes distinct adaptations in right and left ventricle of female SpragueDawley rats // J. Physiol. Biochem.– Journal of Physiology and Biochemistry, 2019.– Vol. 75, № 4.– P. 561–572.

108.Wieser M.E., Holden N., Coplen T.B., Böhlke J.K., Berglund M., Brand W.A., De Bièvre P., Gröning M., Loss R.D., Meija J. H.T. Atomic weights of the elements 2013 (IUPAC Technical Report) // Pure Appl. Chem.– 2011.– Vol.

85, № 5.– P. 1047–1078.

109.Boldyrev M. Lead: properties, history, and applications // WikiJournal Sci.– 2018.– Vol. 1, № 2.– P. 7.

110.Кошкина В.С., Котляр Н.Н., Котельникова Л.В. Д.Н.А. Клинико-

токсикологическая характеристика свинца и его соединений // Медицинские новости.– 2013.– Т. 1, № 220.– С. 20–25.

111.Ferreira de Mattos G., Costa C., Savio F., Alonso M., Nicolson G.L. Lead poisoning: acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels // Biophys. Rev.– Biophysical Reviews, 2017.– Vol. 9, № 5.– P. 807–825.

112.Kader Mohiuddin A. Heavy Metals in Cosmetics: The Notorious Daredevils and Burning Health Issues // Am. J. Biomed. Sci. Res.– 2019.– Vol. 4, № 5.–

P. 332–337.

113.Fioresi M., Simões M.R., Furieri L.B., Broseghini-Filho G.B., Vescovi M.V.A., Stefanon I., Vassallo D.V. Chronic lead exposure increases blood pressure and myocardial contractility in rats // PLoS One.– 2014.– Vol. 9, №

5.

114.UNEP. Leaded Petrol Phase-out: Global Status as at March 2017 [Electronic resource].– 2017.– URL: http://wedocs.unep.org/bitstream/handle/20.500.11822/17542/MapWorldLea

125

Рекомендовано к изучению сайтом МедУнивер - https://meduniver.com/

d_March2017.pdf?sequence=1&isAllowed=y (accessed: 09.01.2020).

115.WHO. Global Health Observatory: Regulations and controls on lead paint [Electronic resource].– 2018.– URL: https://www.who.int/gho/phe/chemical_safety/lead_paint_regulations/en/ (accessed: 09.01.2020).

116.Oginawati K., Sidhi R., Susetyo S.H. Lead exposure in trader communities in industrial area of the battery recycling plant: Tangerang, Indonesia // J. Ecol. Eng.– 2020.– Vol. 21, № 4.– P. 264–270.

117.Ma C., Iwai-Shimada M., Tatsuta N., Nakai K., Isobe T., Takagi M., Nishihama Y., Nakayama S.F. Health risk assessment and source apportionment of mercury, lead, cadmium, selenium, and manganese in japanese women: An adjunct study to the japan environment and children’s study // Int. J. Environ. Res. Public Health.– 2020.– Vol. 17, № 7.

118.Katsnelson B.A., Kuzmin S.V., Mazhayeva T.V., Lavrentyev A.N., Privalova L.I., Gurvich V.B. M.O.L. Assessment of Exposure to Toxic Metals through Food with Reference to Some Towns in Russia // J. Environ. Sci. Eng.– 2010.–

Vol. 4, № 4.– P. 53–61.

119.Davuljigari C.B., Gottipolu R.R. Late-life Cardiac Injury in Rats following Early Life Exposure to Lead: Reversal Effect of Nutrient Metal Mixture // Cardiovasc. Toxicol.– Springer US, 2020.– Vol. 20, № 3.– P. 249–260.

120.Carmignani M., Boscolo P., Poma A., Volpe A.R. Kininergic system and arterial hypertension following chronic exposure to inorganic lead // Immunopharmacology.– 1999.– Vol. 44, № 1–2.– P. 105–110.

121.Арустамян О.М., Ткачишин В.С. А.А.Ю. Влияние соединений кадмия на организм человека // Медицина неотложных состояний.– 2016.– Т. 7, №

78.– С. 109–114.

122.Щербов Д.П. М.М.А. Аналитическая химия кадмия.– Наука, 1973.

123.Choong G., Liu Y., Templeton D.M. Interplay of calcium and cadmium in mediating cadmium toxicity // Chem. Biol. Interact.– Elsevier Ireland Ltd, 2014.– Vol. 211, № 1.– P. 54–65.

126

124.Domingo-Relloso A., Riffo-Campos A.L., Haack K., Rentero-Garrido P., Ladd-Acosta C., Fallin D.M., Tang W.Y., Herreros-Martinez M., Gonzalez J.R., Bozack A.K., Cole S.A., Navas-Acien A., Tellez-Plaza M. Cadmium, smoking, and human blood DNA methylation profiles in adults from the strong heart study // Environ. Health Perspect.– 2020.– Vol. 128, № 6.

125.Vaziri N.D. Mechanisms of lead-induced hypertension and cardiovascular disease // Physiol. Am. J. Physiol. Circ.– 2008.– Vol. 295, № 2.– P. H454-65.

126.Трахтенберг И.М., Лубянова И.П. А.Е.Л. Роль свинца и железа, как техногенных химических загрязнителей, в патогенезе сердечно-

сосудистых заболеваний // Медицина профилактическая.– 2010.– Т. 49,

№ 7–8.– С. 36–39.

127.Yang W.Y., Zhang Z.Y., Thijs L., Cauwenberghs N., Wei F.F., Jacobs L., Luttun A., Verhamme P., Kuznetsova T., Nawrot T.S., Staessen J.A. Left ventricular structure and function in relation to environmental exposure to lead and cadmium // J. Am. Heart Assoc.– 2017.– Vol. 6, № 2.– P. 1–11.

128.Glenn B.S., Bandeen-Roche K., Lee B.K., Weaver V.M., Todd A.C., Schwartz B.S. Changes in systolic blood pressure associated with lead in blood and bone // Epidemiology.– 2006.– Vol. 17, № 5.– P. 538–544.

129.Navas-Acien A., Guallar E., Silbergeld E.K., Rothenberg S.J. Lead exposure and cardiovascular disease - A systematic review // Environ. Health Perspect.– 2007.– Vol. 115, № 3.– P. 472–482.

130.Fiorim J., Júnior R.F., Silveira E.A., Padilha A.S., Vescovi M.V., de Jesus

H.C., Stefanon I., Salaices M. V.D.V. Low-Level Lead Exposure Increases Systolic Arterial Pressure and Endothelium-Derived Vasodilator Factors in Rat Aortas // PLoS One.– 2011.– Vol. 6, № 2.– P. 1–9.

131.Silveira E.A., Siman F.D.M., De Oliveira Faria T., Vescovi M.V.A., Furieri L.B., Lizardo J.H.F., Stefanon I., Padilha A.S., Vassallo D.V. Low-dose chronic lead exposure increases systolic arterial pressure and vascular reactivity of rat aortas // Free Radic. Biol. Med.– Elsevier, 2014.– Vol. 67.– P. 366–376.

127

Рекомендовано к изучению сайтом МедУнивер - https://meduniver.com/

132.Simões M.R., Ribeiro R.F., Vescovi M.V.A., de Jesus H.C., Padilha A.S.,

Stefanon I., Vassallo D. V., Salaices M., Fioresi M. Acute lead exposure increases arterial pressure: Role of the renin-angiotensin system // PLoS ONE.– 2011.– Vol. 6, № 4.

133.Vaziri N.D., Ding Y. Effect of lead on nitric oxide synthase expression in coronary endothelial cells. Role of superoxide // Hypertension.– 2001.– Vol.

37, № 2 I.– P. 223–226.

134.Carmignani M., Volpe A.R., Boscolo P., Qiao N., Di Gioacchino M., Grilli A., Felaco M. Catcholamine and nitric oxide systems as targets of chronic lead exposure in inducing selective functional impairment // Life Sci.– 2000.– Vol.

68, № 4.– P. 401–415.

135.Hegde S., Maysky M., Zaidi A. A Rare Case of Lead-Induced Cardiomyopathy // JACC Case Reports.– Elsevier, 2020.– Vol. 2, № 10.– P. 1496–1500.

136.Protsenko Y.L., Katsnelson B.A., Klinova S.V., Lookin O.N., Balakin A.A., Nikitina L.V., Gerzen O.P., Minigalieva I.A., Privalova L.I., Gurvich V.B., Sutunkova M.P., Katsnelson L.B. Effects of subchronic lead intoxication of rats on the myocardium contractility // Food Chem. Toxicol.– 2018.– Vol. 120.– P. 378–389.

137.Klinova S. V., Minigalieva I.A., Privalova L.I., Valamina I.E., Makeyev O.H., Shuman E.A., Korotkov A.A., Panov V.G., Sutunkova M.P., Ryabova J. V., Bushueva T. V., Shtin T.N., Gurvich V.B., Katsnelson B.A. Further verification of some postulates of the combined toxicity theory: New animal experimental data on separate and joint adverse effects of lead and cadmium // Food Chem. Toxicol.– Elsevier, 2020.– Vol. 136, № November 2019.– P. 110971.

138.Dabrowska-Bouta B., Struzyńska L., RafaŁowska U. Does lead provoke the peroxidation process in rat brain synaptosomes? // Mol. Chem. Neuropathol.– 1996.– Vol. 29, № 2–3.– P. 127–139.

139.Ahmad F., Haque S., Ravinayagam V., Ahmad A., Kamli M.R., Barreto G.E., Ghulam Md Ashraf. Developmental lead (Pb)-induced deficits in redox and

128

bioenergetic status of cerebellar synapses are ameliorated by ascorbate

supplementation // Toxicology.– Elsevier, 2020.– Vol. 440, № May.– P.

152492.

140.Hu H., Téllez-Rojo M.M., Bellinger D., Smith D., Ettinger A.S., LamadridFigueroa H., Schwartz J., Schnaas L., Mercado-García A., Hernández-Avila M. Fetal Lead Exposure at Each Stage of Pregnancy as a Predictor of Infant Mental Development // Environ. Health Perspect.– 2006.– Vol. 114, № 11.–

P. 1730–1735.

141.Nie L.H., Wright R.O., Bellinger D.C., Hussain J., Amarasiriwardena C.,

Chettle D.R., Pejović-Milić A., Woolf A., Shannon M. Blood lead levels and cumulative blood lead index (CBLI) as predictors of late neurodevelopment in lead poisoned children // Biomarkers.– Taylor & Francis, 2011.– Vol. 16, №

6.– P. 517–524.

142.Roy A., Bellinger D., Hu H., Schwartz J., Ettinger A.S., Wright R.O., Bouchard M., Palaniappan K., Balakrishnan K. Lead Exposure and Behavior among Young Children in Chennai, India // Environ. Health Perspect.– 2009.–

Vol. 117, № 10.– P. 1607–1611.

143.Katsnelson B.A., Privalova L.I., Kuzmin S.V., Malykh O.L., Gurvitch V.B., Voronin S.A., Matyukhina G.V., Degtyareva T.D., Marshalkin A.P., Prokopyev A.A. G.S.V. Lead and childhood: risks and their management (the Middle Urals experience) // Cent. Eur. J. Occup. Environ. Med.– 2008.– Vol.

14, № 3.– P. 3–25.

144.Staessen J.A., Lauwerys R.R., Buchet J.P., Bulpitt C.J., Rondia D., Vanrenterghem Y., Amery A. the C.S.G. Impairment of Renal Function with Increasing Blood Lead Concentration in the General Population // N. Engl. J. Med.– 1992.– Vol. 327, № 3.– P. 151–156.

145.Katsnelson B.A., Kuzmin S. V, Privalova L.I., Khrushcheva N.A., Beikin J.B., Postnikova T. V, Zhuravleva N.S., Makarenko N.P., Kireyeva E.P., Porovitsina A. V, Bojarsky S.N., Denisenko S.A. an Association Between Incipient Renal Damage and Urine Levels of Cadmium and Lead in a Group

129

Рекомендовано к изучению сайтом МедУнивер - https://meduniver.com/

of Russian Preschool Children // Epidemiology.– 2005.– Vol. 16, № 5.– P.

S21.

146.Balasubramanian B., Meyyazhagan A., Chinnappan A.J., Alagamuthu K.K., Shanmugam S., Al-Dhabi N.A., Mohammed Ghilan A.K., Duraipandiyan V., Valan Arasu M. Occupational health hazards on workers exposure to lead (Pb): A genotoxicity analysis // J. Infect. Public Health.– King Saud Bin Abdulaziz University for Health Sciences, 2020.– Vol. 13, № 4.– P. 527–531.

147.Luo T., Shen M., Zhou J., Wang X., Xia J., Fu Z., Jin Y. Chronic exposure to low doses of Pb induces hepatotoxicity at the physiological, biochemical, and transcriptomic levels of mice // Environ. Toxicol.– 2019.– Vol. 34, № 4.– P. 521–529.

148.Alhusaini A., Fadda L., Hasan I.H., Zakaria E., Alenazi A.M., Mahmoud A.M. Curcumin ameliorates lead-induced hepatotoxicity by suppressing oxidative stress and inflammation, and modulating akt/gsk-3β signaling pathway // Biomolecules.– 2019.– Vol. 9, № 11.

149.Almenara C.C.P., Oliveira T.F., Padilha A.S. The Role of Antioxidants on the Prevention of Cadmium-Induced Endothelial Dysfunction // Curr. Pharm. Des.– 2020.– Vol. 26.– P. 1–9.

150.Al-Naemi H.A., Das S.C. Cadmium-induced endothelial dysfunction mediated by asymmetric dimethylarginine // Environ. Sci. Pollut. Res.– Environmental Science and Pollution Research, 2020.– Vol. 27, № 14.– P. 16246–16253.

151.Shen J., Wang X., Zhou D., Li T., Tang L., Gong T., Su J., Liang P. Modelling cadmium-induced cardiotoxicity using human pluripotent stem cell-derived cardiomyocytes // J. Cell. Mol. Med.– 2018.– Vol. 22, № 9.– P. 4221–4235.

152.Limaye D.A., Shaikh Z.A. Cytotoxicity of cadmium and characteristics of its transport in cardiomyocytes // Toxicol. Appl. Pharmacol.– 1999.– Vol. 154,

№ 1.– P. 59–66.

153.Ali S., Awan Z., Mumtaz S., Shakir H.A., Ahmad F., Ulhaq M., Tahir H.M., Awan M.S., Sharif S., Irfan M., Khan M.A. Cardiac toxicity of heavy metals (cadmium and mercury) and pharmacological intervention by vitamin C in

130