Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2 курс / Биохимия / БХ крови .docx
Скачиваний:
1
Добавлен:
23.03.2024
Размер:
433.38 Кб
Скачать

7. Метаболизм гемоглобина. Синтез гема, гемоглобина. Регуляция синтеза.

Гемоглобин - сложный белок, в качестве белкового компонента содержит глобин, а небелкового – гемм. Нb А1 имеет четвертичную структуру.

Глобин - это белковая часть, состоящая из 4-х субъединиц: α, β. Всего 2 α-цепи, содержащие по 141 аминокислотному остатку и 2 β- по 146 аминокислот. Вторичные их структуры представлены в виде спиральных сегментов различной длины. Третичные структуры α- и β-цепей очень сходны. Внутри каждой субъединицы имеется гидрофобный "карман", в котором удерживается гем, благодаря ван-дер-ваальсовым связкам между неполярными участками гема и гидрофобными радикалами аминокислот (связей около 60).

О снову структуры простетической группы бол-ва гемосодержащих белков составляет порфириновое кольцо, которое явл. в свою очередь производным тетрапирольного соединения – порфирина. Последний сост. из замещённых пирролов, соединённых между собой метиновыми мостиками. Гем - это тетрапиррольное соединение с атомом Fе+2, соединенного с азотами пирролов, 5-я связь с имидазольным кольцом гистидина глобина. Шестая координационная связь Fе+2 свободна и используется для связывания кислорода и других лигандов. 4 метильные, 2 винильные и 2 пропионатные боковые цепи.

Белковая часть молекулы Нb влияет на свойства гема. Молекула Нb взаимодействует с различными лигандами. Очень высоко сродство Нb к оксиду углерода (II) - СО примерно в 300 раз больше, чем к О2, что говорит о высокой токсичности угарного газа. Эта форма носит название карбоксигемоглобина, Fe+2 не меняет валентности. При действии окислителей (например, нитрата натрия) образуется метгемоглобин, в котором Fe в степени окисления +3. Появление метгемоглобина в больших количествах вызывает кислородное голодание тканей.

Гемоглобины могут различаться по белковой части, в связи с этим существуют физиологические и аномальные типы Нb. Физиологические Нb образуются на разных этапах нормального развития организма, а аномальные - вследствие нарушений последовательности аминокислот в глобине.

Физиологические типы гемоглобинов отличаются друг от друга набором полипептидных цепей. Различают гемоглобины взрослых Нb А1 (96%), Нb А2 (2-3%), состоящий из 4 субъединиц: двух α-цепей и двух δ-цепей. Известен, кроме того, фетальный гемоглобин HbF , состоящий из двух α-цепей и двух γ-цепей (1-2%). НbА2 и НbF обладают большим сродством к кислороду, чем Нb А1. Аномальный – гликозилированный HbAc1 – 5-6%.

Общая группа заболеваний, связанная с Нb, носит название гемоглобинозов. Различают среди них гемоглобинопатии, например серповидноклеточная анемия, когда происходит замена при синтезе β-цепи в 6-ом положение глутаминовой кислоты на валин в β-цепях молекулы гемоглобина S. Эритроциты приобретает форму серпа, понижается сродство к О2. Бледность, кожа эластичная, повышенная утомляемость, гипоксия, частые головокружения, одышка, отставание в росте и развитии, желтая кожа.

Талассемия - это заболевание, при котором полностью нарушается синтез либо цепи α или β (α-талассемия или β-талассемия). При β-талассемии в крови наряду с HbA1 появляется до 15% НЬА2 и резко повышается содержание HbF – до 15–60%. Болезнь характеризуется гиперплазией и разрушением костного мозга, поражением печени, селезенки, деформацией черепа и сопровождается тяжелой гемолитической анемией. Эритроциты при талассемии приобретают мишеневидную форму.

Известно, что эритроциты больных сахарным диабетом содержат процент минорного компонента Нb, так называемый гликозилированный Нb (Нb А1с). Гликозилированный гемоглобин отражает процент гемоглобина крови, необратимо соединённый с молекулами глюкозы. Время жизни эритроцитов, которые содержат гемоглобин, составляет в среднем 120—125 суток. Именно поэтому уровень гликозилированного гемоглобина отражает средний уровень гликемии на протяжении примерно трёх месяцев. Чем выше уровень гликозилированного гемоглобина, тем выше была гликемия за последние три месяца и, соответственно, больше риск развития осложнений сахарного диабета.

Норма глюкозы = 3,5-6,0 ммоль/л. Глюкозурия – 9,0 ммоль/л.

Коллаген составляет основу базальных мембран капилляров. Повышенное содержание гликозилированного коллагена ведет к уменьшению его эластичности, растворимости, к преждевременному старению, развитию контрактур. Сосуды разрываются, возникает микроангиопатия (диабетические ретинопатия, нефропатия, стопа). Гликозилированные липопротеины, накапливаясь в сосудистой стенке, приводят к развитию гиперхолестеринемии и липидной инфильтрации. Они служат основой атером, происходит нарушение сосудистого тонуса, что приводит к атеросклерозу.

Гликозилирование гемоглобина идёт в 2 этапа:

1) Глюкоза ферментативно соединяется своей карбонильной группой с N-концевым остатков β-цепи валина. Это стадия обратима

2) Глик. гемоглобин подвергается переустройству с образованием кетоамина. Это стадия необратима.

БИОСИНТЕЗ ГЕМА. Гем синтезируется во всех тканях, но с наибольшей скоростью в костном мозге и печени . В костном мозге гем необходим для синтеза гемоглобина в ретикулоцитах, в гепатоцитах - для образования цитохрома Р450.

Первая реакция синтеза гема - образование 5-аминолевулиновой кислоты из глицина и сукцинил-КоА идёт в матриксе митохондрий, где в ЦТК образуется один из субстратов этой реакции - сукцинил-КоА. Эту реакцию катализирует пиридоксальзависимый фермент 5-аминолевулинатсинтаза.

И з митохондрий 5-аминолевулиновая кислота поступает в цитоплазму. В цитоплазме проходят промежуточные этапы синтеза гема: соединение 2 молекул 5-аминолевулиновой кислоты в молекулу порфобилиногена, дезаминирование порфобилиногена с образованием гидроксиметилбилана, ферментативное превращение гидроксиметилбилана в молекулу уропорфобилиногена III, декарбоксилирование последнего с образованием копропорфириногена III. Гидроксиметилбилан может также неферментативно превращаться в уропорфириноген I, который декарбоксилируется в копропорфириноген I. Из цитоплазмы копропорфириноген III опять поступает в митохондрии, где проходят заключительные реакции синтеза гема. В результате двух последовательных окислительных реакций копропорфириноген III превращается в протопорфириноген IX, а протопорфириноген IX - в протопорфирин IX. Фермент феррохелатаза, присоединяя к протопорфирину IX двухвалентное железо, превращает его в гем. Источником железа для синтеза гема служит депонирующий железо белок ферритин. Синтезированный гем, соединяясь с α- и β-по-липепептидными цепями глобина, образует гемоглобин. Гем регулирует синтез глобина: при снижении скорости синтеза гема синтез глобина в ретикулоцитах тормозится.

РЕГУЛЯЦИЯ БИОСИНТЕЗА ГЕМА. Рис: (Регуляция синтеза гема и гемоглобина. Гем по принципу «-» обратной связи ингибирует 5-аминолевулинатсинтазу и 5-аминолевулинатдегидратазу и явл. индуктором трансляции α- и β-цепей Hb-а.) «+» регуляция – стероидные гормоны.

Регуляторную реакцию синтеза гема катализирует пиридоксальзависимый фермент 5-аминолевулинатсинтаза. Скорость реакции регулируется аллостерически и на уровне трансляции фермента. Аллостерическим ингибитором и корепрессором синтеза 5-аминолевулинатсинтазы является гем.

В ретикулоцитах синтез этого фермента на этапе трансляции регулирует железо. На участке инициации мРHК, кодирующей фермент, имеется последовательность нуклеотидов, образующая шпилечную петлю, которая называется железочувствительным элементом (IRE).

При высоких конц. железа в клетках оно образует комплекс с остатками цистеина регуляторного железосвязывающего белка. Взаимодействие железа с регуляторным железосвязывающим белком вызывает снижение сродства этого белка к IRE-элементу мРHК, кодирующей 5-аминолевулинатсинтазу, и продолжение трансляции. При низких концентрациях железа железосвязывающий белок присоединяется к железочувствительному элементу, находящемуся на 5'-нетранслируемом конце мРНК, и трансляция 5-аминолевулинат-синтазы тормозится.

5-Аминолевулинатдегидратаза также аллостерически ингибируется гемом, но так как активность этого фермента почти в 80 раз превышает активность 5-аминолевулинатсинтазы, то это не имеет большого физиолог. значения. Дефицит пиридоксальфосфата и лекарств. препараты, которые являются его структурными аналогами, снижают активность 5-аминолевулинатсинтазы.