Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety.docx
Скачиваний:
12
Добавлен:
12.03.2015
Размер:
144.85 Кб
Скачать

.1. КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИС развитием точных наук появилась настоятельная необходи­мость в проведении большого количества точных вычислений. В 1642 г. французский математик Блез Паскаль сконструировал первую механическую счетную машину, известную как суммиру­ющая машина Паскаля (рис. 1.1). Эта машина представляла собой комбинацию взаимосвязанных колесиков и приводов. На колеси­ках были нанесены цифры от 0 до 9. Когда первое колесико (еди­ницы) делало полный оборот, в действие автоматически приво­дилось второе колесико (десятки); когда и оно достигало цифры 9, начинало вращаться третье колесико и т.д. Машина Паскаля могла только складывать и вычитать. В 1694 г. немецкий математик Готфрид Вильгельм фон Лейбниц сконструировал более совершенную счетную машину (рис. 1.2). Он был убежден, что его изобретение найдет широкое применение не только в науке, но и в быту. В от­личие от машины Паскаля Лейб­ниц использовал цилиндры, а не колесики и приводы. На цилинд­ры были нанесены цифры. Каждый цилиндр имел девять рядов высту­пов или зубцов. При этом первый ряд содержал 1 выступ, второй - 2 и так вплоть до девятого ряда, который содержал 9 выступов. Ци­линдры были подвижными и при­водились в определенное положе­ние оператором. Конструкция ма­шины Лейбница была более совер­шенной: она была способна выпол­нять не только сложение и вычи­тание, но и умножение, деление и даже извлечение квадратного корня. Интересно, что потомки этой конструкции дожили до 70-х годов XX в. в форме механических каль­куляторов (арифмометр типа «Фе­ликс») и широко использовались для различных расчетов (рис. 1.3). Однако уже в конце XIX в. с изоб­ретением электромагнитного реле появились первые электромехани­ческие счетные устройства. В 1887 г. Герман Голлерит (США) изобрел электромеханический табулятор с вводом чисел с помощью перфо­карт. На идею использовать перфо­карты его натолкнула пробивка компостером проездных билетов на железнодорожном транспорте. Раз­работанная им 80-колонная перфо­карта не претерпела существенных изменений и в качестве носителя информации использовалась в пер­вых трех поколениях компьютеров. Табуляторы Голлерита использова­лись во время 1-й переписи насе­ления в России в 1897 г. Сам изобретатель тогда специально приезжал в Санкт-Петербург. С этого времени электромеханические табуляторы и другие подобные им устройства стали широко применяться в бухгалтерском учете.  В начале XIX в. Чарльз Бэббидж сформулировал основные по­ложения, которые должны лежать в основе конструкции вычис­лительной машины принципиально нового типа. В такой машине, по его мнению, должны быть «склад» для хранения цифровой информации, специальное устройство, осу­ществляющее операции над числами, взятыми со «склада». Бэб­бидж называл такое устройство «мельницей». Другое устройство служит для управления последовательностью выполнения опера­ций, передачей чисел со «склада» на «мельницу» и обратно, на­конец, в машине должно быть устройство для ввода исходных дан­ных и вывода результатов вычислений. Эта машина так никогда и не была построена - существовали лишь ее модели (рис. 1.4), но принципы, положенные в ее основу, были позже реализованы в цифровых ЭВМ. Научные идеи Бэббиджа увлекли дочь известного английско­го поэта лорда Байрона - графиню Аду Августу Лавлейс. Она заложила первые фундаментальные идеи о взаимодействии раз­личных блоков вычислительной машины и последовательности решения на ней задач. Поэтому Аду Лавлейс по праву считают первым в мире программистом. Многими понятиями, введенны­ми Адой Лавлейс в описания первых в мире программ, широко пользуются современные программисты.

5. Свойство информации и ее измерение

1) объективность 2)достоверность 3) актуальность 4)ценность 5)точность и полнота

10.

Существует «минимальная» конфигурация ПК, т.е. минимальный набор устройств, без которых работа с ПК становится бессмысленной. Это — системный блок, монитор, клавиатура, мышь. Обычно под набором комплектующих, объединенных понятием «типовой персональный компьютер», понимают следующий их состав: корпус с блоком питания;

системная (материнская) плата;

процессор;

оперативная память;

видеоконтроллер;

монитор;

жесткий диск;

клавиатура;

мышь;  дисковод CD-ROM;

дисковод гибких дисков;

звуковая карта.

13.Устройство ввода-вы́вода  — компонент типовой архитектуры ЭВМ, предоставляющий компьютеру возможность взаимодействия с внешним миром и, в частности, с пользователями.

Устройства ввода — периферийное оборудование для занесения (ввода) данных или сигналов в компьютер либо в другое электронное устройство во время его работы. Устройства ввода и вывода составляют аппаратный интерфейс между компьютером и сканером или 6DOF-контроллером.

Устройства ввода подразделяются на следующие категории:

  • аудио, видео и механические устройства;

  • непрерывные устройства ввода (к примеру, мышь, позиция которой изменяется достаточно быстро и постоянно, что может рассматриваться как непрерывный ввод);

  • устройства для пространственного использования, такие как двухмерная мышь или трехмерный навигатор (особенно для CAD-приложений).

Также многие компьютерные указывающие устройства ввода классифицируются по способу управления курсором:

  • прямой ввод, когда управление осуществляется непосредственно в месте видимости курсора. Например, сенсорные панели и экраны;

  • непрямые указывающие устройства, к примеру, трекболы или мыши.

Устро́йствавы́вода' — периферийные устройства, преобразующие результаты обработки цифровых машинных кодов в форму, удобную для восприятия человеком или пригодную для воздействия на исполнительные органы объекта управления.

16. Этапы решения задач на компьютере: 1. Постановка задачи: • сбор информации о задаче; • формулировка условия задачи; • определение конечных целей решения задачи; • определение формы выдачи результатов; • описание данных (их типов, диапазонов величин, структуры и т. п.). 2. Анализ и исследование задачи, модели: • анализ существующих аналогов; • анализ технических и программных средств; • разработка математической модели; • разработка структур данных. 3. Разработка алгоритма: • выбор метода проектирования алгоритма; • выбор формы записи алгоритма (блок-схемы, псевдокод и др.); • выбор тестов и метода тестирования; • проектирование алгоритма. 4. Программирование: • выбор языка программирования; • уточнение способов организации данных; • запись алгоритма на выбранном языке программирования. 5. Тестирование и отладка: • синтаксическая отладка; • отладка семантики и логической структуры; • тестовые расчеты и анализ результатов тестирования; • совершенствование программы. 6. Анализ результатов решения задачи и уточнение в случае необходимости математической модели с повторным выполнением этапов 2-5. 7. Сопровождение программы: • доработка программы для решения конкретных задач; • составление документации к решенной задаче, к математической модели, к алгоритму, к программе, к набору тестов, к использованию.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]