Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЗАДАЧИ_1.DOC
Скачиваний:
29
Добавлен:
14.02.2015
Размер:
204.8 Кб
Скачать

15

Часть I. Механика. Молекулярная физика и термодинамика. Общие указания к решению задач

  1. Указать основные законы и формулы, на которых базируется решение, разъяснить буквенные обозначения формул. Если при решении задач применяется формула, полученная для частного случая, не выражающая какой-нибудь физический закон, или не являющаяся определением какой-нибудь физической величины, то ее следует вывести.

  2. Дать чертеж, поясняющий содержание задачи (в тех случаях, когда это возможно).

  3. Сопровождать решение задачи краткими, но исчерпывающими пояснениями.

  4. Получить решение задачи в общем виде.

  5. Подставить в правую часть полученной рабочей формулы вместо символов величин обозначения единиц, произвести с ними необходимые действия и убедиться в том, что полученная при этом единица соответствует искомой величине.

  6. Подставить в рабочую формулу числовые значения величин, выраженные в единицах одной системы.

  7. Произвести вычисление величин, подставленных в формулу, руководствуясь правилами приближенных вычислений, записать в ответе числовое значение и сокращенное наименование единицы искомой величины.

  8. Оценить, где это целесообразно, правдоподобность численного ответа.

Темы задач

I. КИНЕМАТИКА КРИВОЛИНЕЙНОГО ДВИЖЕНИЯ

II. ДИНАМИКА ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ. РАБОТА. ЭНЕРГИЯ

III. ЗАКОНЫ СОХРАНЕНИЯ ЭНЕРГИИ И ИМПУЛЬСА

VI. ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДЫХ ТЕЛ

V. I НАЧАЛО ТЕРМОДИНАМИКИ. КПД тепловых машин

VI. Теплоемкость и внутренняя энергия газа

VII. Напряженность и потенциал точечного заряда. Принцип суперпозиции полей

VIII. Законы Ома. Правила Кирхгофа

IX. Энергия электрического поля. Закон Джоуля Ленца

Механика. Молекулярная физика и термодинамика

I. Кинематика криволинейного движения

1.1. Маховик при вращении делает 300 об/мин. Будучи предоставлен самому себе, он остановился через 30 сек. Определить угловое ускорение при замедлении и количество оборотов до остановки.

1.2. Маховик, находившийся в покое, приведен в равноускоренное вращение с угловым ускорением 0,5 рад/сек2. Через сколько времени маховик будет обладать угловой скоростью 360 об/мин? Сколько нужно времени, чтобы маховик, вращаясь равноускоренно, совершил 600 оборотов?

1.3. Ось с двумя дисками, расположенными на расстоянии 0,5 м друг от друга, вращается с частотой 1600 об/мин. Пуля, летящая вдоль оси, пробивает оба диска, при этом отверстие от пули во втором диске смещено относительно отверстия в первом диске на угол 12. Найти скорость пули.

1.4. Найти угловое ускорение колеса, если известно, что через время 2 сек после начала движения вектор полного ускорения точки, лежащей на ободе, составляет угол 60 с вектором ее линейной скорости.

1.5. Колесо радиусом 0,1 м вращается так, что зависимость угла поворота радиуса колеса от времени дается выражением =А+Bt+Ct3, где А=3 рад, В=2 рад/с, С=1 рад/с3. Для точек, лежащих на ободе колеса, найти через время 2 сек после начала движения: угловую скорость, линейную скорость, угловое ускорение, тангенциальное и нормальное ускорения.

1.6. Точка движется по окружности радиусом 2 см. Зависимость пути от времени дается уравнением s=Ct3 , где С=0,1 см/с3. Найти тангенциальное ускорение точки в момент, когда линейная скорость точки равна 0,3 м/с.

1.7. Тело брошено со скоростью V0=20 м/с под углом 300 к горизонту. Пренебрегая сопротивлением воздуха, определить для момента времени t=1,5 с после начала движения: нормальное ускорение и тангенциальное ускорение.

1.8. Пуля выпущена с начальной скоростью 200 м/с под углом 600 к горизонту. Определить максимальную высоту подъема, дальность полета и радиус кривизны траектории пули в наивысшей точке. Сопротивлением воздуха пренебречь.

1.9. Линейная скорость V1 точек на окружности вращающегося диска равна 3 м/с. Точки, расположенные на R=10 см ближе к оси, имеют линейную скорость V2=2 м/с. Определить частоту вращения диска.

1.10. Камень брошен горизонтально со скоростью 15 м/с. Найти нормальное и тангенциальное ускорения камня через 1 сек. после начала движения.

1.11. Маховик начал вращаться равноускоренно и за промежуток времени 10 c достиг частоты вращения 300 мин-1. Определить угловое ускорение маховика и число оборотов, которое он сделал за это время.

1.12. Колесо радиусом 1 м вращается так, что зависимость угла поворота радиуса колеса от времени дается выражением =Bt+Ct3, где В=2 рад/с, С=1 рад/с3. Для точек, лежащих на ободе колеса, найти через время 5 с после начала движения: угловую скорость, угловое ускорение, тангенциальное и нормальное ускорения.

1.13. Точка движется по окружности радиусом 5 см. Зависимость пути от времени дается уравнением s=Ct3, где С=2 см/с3. Найти тангенциальное ускорение точки в момент, когда линейная скорость точки равна 1 м/с.

1.14. Тело брошено горизонтально со скоростью 15 м/с. Пренебрегая сопротивлением воздуха, определить радиус кривизны траектории тела через 2 сек после начала движения.

1.15. Материальная точка начинает двигаться по окружности радиусом 12,5 см с постоянным тангенциальным ускорением 0,5 см/с2. Определить: момент времени, при котором вектор ускорения образует с вектором скорости и угол 450.

1.16. Линейная скорость V1 точки, находящейся на ободе вращающегося диска, в три раза больше, чем линейная скорость V2 точки, находящейся на 6 см ближе к его оси. Определить радиус диска.

1.17. Колесо вращается с постоянным угловым ускорением 3 рад/с2. Определить радиус колеса, если через 1 cек после начала движения полное ускорение колеса равно 7,5 м/с2.

1.18. Якорь электродвигателя, имеющий частоту вращения 50 с-1, после выключения тока, сделав 628 оборотов, остановился. Определить угловое ускорение якоря.

1.19. Колесо автомашины вращается равнозамедленно. За время 2 мин оно изменило частоту вращения от 240 до 60 мин-1. Определить: угловое ускорение колеса; число полных оборотов, сделанных колесом за это время.

1.20. Точка движется по окружности радиусом 15 см с постоянным тангенциальным ускорением. К концу четвертого оборота после начала движения линейная скорость точки 15 см/с. Определить нормальное ускорение точки через 16 с после начала движения.

1.21. Под углом 60 к горизонту брошено тело со скоростью 20 м/с. Определить нормальное и тангенциальное ускорения через 1 сек после начала движения. Трение отсутствует.

1.22. Камень брошен горизонтально со скоростью 10 м/с. Найти радиус кривизны траектории камня через 3 сек после начала движения.

1.23. Колесо радиусом 0,1 м вращается так, что зависимость угла поворота радиуса колеса от времени дается выражением =А+Bt+Ct3, где А=5 рад, В=3 рад/с, С=1 рад/с3. Для точек, лежащих на ободе колеса, найти через время 1 с после начала движения тангенциальное и нормальное ускорения.

1.24. Точка движется по окружности радиусом 5 см. Зависимость пути от времени дается уравнением s=Ct3, где С=1 см/с3. Найти полное ускорение точки в момент, когда ее линейная скорость равна 1 м/с.

1.25. Под углом 45 к горизонту брошено тело со скоростью 10 м/с. Определить нормальное и тангенциальное ускорения через 2 сек после начала движения. Трение отсутствует.

1.26. По дуге окружности радиусом 10 м движется точка. В некоторый момент времени нормальное ускорение точки 4,9 м/с2; в этот момент векторы полного и нормального ускорений образуют угол 600. Найти скорость и тангенциальное ускорение точки.

1.27. Колесо радиусом 1 м вращается так, что зависимость угла поворота радиуса колеса от времени дается выражением =Bt+Ct3, где В=2 рад/с, С=1 рад/с3. Для точек, лежащих на ободе колеса, найти через время 5 с после начала движения: угловую скорость, угловое ускорение, тангенциальное и нормальное ускорения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]