Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Molekuljarnaja Biologija Kletki v2

.pdf
Скачиваний:
28
Добавлен:
10.02.2015
Размер:
34.36 Mб
Скачать

221

Рис. 10-49. Схема, объясняющая тачное соответствие между положением в хромосоме каждого регулирующего участка биторального гомплекса и расположением на теле мухи тех парасегментов, на которые оказывают влияние мутации в этой области. А. Контроль на уровне изменения структуры хроматина. Предполагается, что хроматин деконденсируется или же постепенно активируется во все более отдаленных парасегментах, таким образом, в парасегменте 5 открыта только регуляторная область вbх/bх, тогда как все остальные регуляторные участки экспонированы в самых удаленных парасегментах. находящихся под контролем того комплекса (парасегмент 13, см. рис. 10-48). На данном рисунке

изображены лишь три парасегмента. Ген Ubx может образовывать несколько различных транскриптов (обозначенных здесь квадратиками и кружочками), отбор которых контролируется регуляторными областями. Таким образом, биторальный комплекс образует в каждом из парасегментов свою смесь белков-регуляторов (Б).

области этого комплекса содержат менее 20 000 нуклеотидных пар, тогда как регуляторные последовательности насчитывают приблизительно 300000 нуклеотидных пар. По-видимому, регуляторные области состоят из набора энхансеров, расположение которых по длине хромосомы соответствует расположению сегментов тела, подвергающихся действию этих энхансеров (рис. 10-48). Эти факты в совокупности с данными о строении тела мутантных мух, у которых один из энхансеров транслоцирован из одной части комплекса биторакса в другую, позволяют выдвинуть предположение о регуляции генов внутри комплекса биторакса на основе изменений в структуре хроматина. Согласно этому предположению, в клетках, образующих комплекс биторакса и расположенных все ближе к концу тела, последовательно открываются лежащие один за другим домены хроматина. Это дает возможность энхансерам, локализованным в данных доменах, активироваться в строгой очередности (рис. 10-49). Весьма вероятно, что механизмы, контролирующие гены белков-регуляторов, не менее сложны.

Заключение

В организме животных и растений функционируют механизмы, ответственные за то, что в разных клетках транскрибируются разные гены. Так как многие специализированные клетки обладают способностью поддерживать свои уникальные свойства при выращивании их в культуре, механизмы регуляции генов должны быть стабильными и наследуемыми. Прокариоты и дрожжи представляют собой весьма удобную модельную систему, с помощью которой можно изучать механизмы регуляции генов. Некоторые из этих механизмов могут также принимать участие в возникновении специализированных типов клеток у высших эукариот. Один из них - конкурентное взаимодействие между двумя или более главными белками-регуляторами, каждый из которых, подавляя образование другого, стимулирует свой собственный синтез.

Изучение экспрессии генов, сконструированных методами генной инженерии, а также фрагментов, встроившихся в случайные сайты генома трансгенных животных,, показало, что большая часть генов высших эукариот контролируется смесью диффундирующих белковрегуляторов, уникальных для каждого типа клеток. Кроме того, на экспрессию генов у высших эукариот может влиять переход хроматина

222

в более или менее конденсированное состояние; у позвоночных транскрипцию неактивных генов подавляет метилирование. Однако для большинства генов эти дополнительные уровни контроля могут либо определяться, либо преодолеваться диффундирующими белкамирегуляторами. До сих пор неизвестно, каким образом контролируются гены, кодирующие главные белки-регуляторы, которые, собственно, и детерминируют у позвоночных тип клетки.

10.4. Посттранскрипционный контроль

Хотя контроль активности большинства генов осуществляется главным образом на уровне инициации транскрипции, тем не менее и позже, в ходе передачи информации от РНК к белку, такой контроль происходит на самых разных этапах. Более того, вполне вероятно, что для некоторых генов каждая стадия их экспрессии находится под контролем. Большая часть сведений о посттранскрипционной регуляции получена лишь недавно, и механизм контроля на этом уровне изучен далеко не "Годностью.

В настоящем разделе речь идет о регуляции экспрессии гена после того, как РНК-полимераза связалась с его промотором и начала синтез РНК. Обсуждение ведется в той же последовательности, в какой регуляторные механизмы могут воздействовать на молекулу РНК после начала транскрипции.

10.4.1. Аттенуацня транскрипции приводит к преждевременной терминации синтеза некоторых молекул РНК [38]

Феномен аттенуацни транскрипции изучали преимущественно на бактериях, где с помощью этого механизма регулируется экспрессия многих генов. Для осуществления регуляции такого типа в начале РНК-цепи должна присутствовать определенная последовательность нуклеотидов, которая позволяла бы молекуле РНК находиться в одной из двух возможных конформаций. Более стабильную конформацию имеет петля РНК, которая служит сигналом терминации для бактериальной РНК-полимеразы; в результате синтез РНК преждевременно останавливается (см. рис. 5-6). Однако, если с определенной последовательностью расту-

Рис. 10-50. Регуляция экспрессии генов с помощью аттенуации транскрипции у прокариот. По мере роста РНК-транскрипта за счет добавлення нукдеотидов к 3'-концу, РНК-транскрипт приобретает одну из двух указанных информации. Наиболее стабильной является

конформация А, которая содержит две шпильки с двойной спиралью, возникшие при спаривании комплементарных оснований. В связи с тем, что за спиралью шпильки, образовавшейся при спаривании сайтов 3 и 4, следует серия U-нуклеотидов, шпилька служит сигналом терминации для бактериальной РНК-полимеразы. Конформация Б образуется, если с сайтом 1 на транскрипте РНК связывается регуляторный белок или рибосома, в результате свободный сайт 2 спаривается с сайтом 3, при этом сигнал терминации пропадает и образуется длинный функциональный транскрипт РНК, который и запускает экспрессию гена.

223

щей молекулы РНК связывается регуляторная молекула, цепь РНК приобретает такую конформацию, при которой сигнала терминации не образуется, а получается длинная функциональная молекула РНК (рис. 10-50), У бактерий таким регуляторним компонентом обычно служит рибосома, которая в процессе трансляции «садится» на растушую цепь РНК.

У эукариот аттенуация транскрипции участвует в регуляции небольшого числа генов. Так как в клеточном ядре функционально активные рибосомы отсутствуют, возможно, что с определенными последовательностями РНК связываются регуляторные молекулы, однако механизм аттенуации в клетках эукариот не изучен.

10-23

10.4.2. Сплайсинг РНК может регулироваться таким образом, что один и тот же ген направляет синтез различных форм белка [39]

Первоначально сплайсинг РНК был открыт у вируса. Оказалось, что из одного первичного транскрипта у него образуется несколько молекул мРНК, и, следовательно, синтезируется несколько разных белков (см. разд. 9.4.12). Многие гены высших эукариот образуют различные белки именно с помощью альтернативного сплайсинга РНК. Если в нескольких участках транскрнпта существуют различные точки сплайсинга, то один и тот же ген может служить матрицей для десятков различных белков. Обычно, однако, возможности сплайсинга ограничены и с каждого транскрипта транслируется лишь несколько белков.

В некоторых случаях альтернативный сплайсинг имеет место вследствие «двусмысленности интрона»: стандартный механизм удаления интронов не может четко различить две или более альтернативные пары 5'- и З'-сайтов сплайсирования, и, таким образом, в разных ситуациях случайно реализуются разные варианты. Подобная конститутивная форма альтернативного сплайсинга, по-видимому, ответственна за образование различных аномальных мРНК мутантного гена (3-глобина у некоторых лиц, страдающих β-талассемией (см. рис. 9-86). Для других генов такая двусмысленность характерна и в норме, при этом во всех тканях, где ген экспрессируется, образуются кодируемые им разные версии одного и того же белка.

Во многих случаях регулируется именно альтернативный сплайсинг РНК, а не конститутивный. Отбор сайтов сплайсинга определяется клеткой. Следовательно, в разных клетках в соответствии с потребностями организма с одного и того же первичного транскрипта РНК могут транслироваться различные белки (или наборы белков). Таким образом, многие белки образуются в тканеспецифичных формах. Среди них компоненты 1) внеклеточного матрикса (фибронектин), 2) клеточного скелета (тропомиозин), 3) плазматической мембраны, 4) ядра (см, табл. 10-1) и 5) внутриклеточных путей клеточной сигнализации (С-киназа и тирозин-протеинкиназа, кодируемые протоонкогеном src; рис. 10-51).

Как правило, замены экзонов, происходящие при альтернативном сплайсинге РНК, не приводят к появлению совершенно разных белков. Вместо этого образуется серия белков, функции которых аналогичны. Их называют изоформамн. Изоформы белка модифицированы таким образом, чтобы они годились для конкретной ткани. Изменения в них могут определять, с какими другими белками будет взаимодействовать данная молекула, причем каталитические или структурные домены

224

Рис. 10-51. При регуляторном альтернативном сплайсинге РНК с гена src считываются две несколько отличающиеся формы тирозинпротеинкиназы. Экзон А включается в последовательность лишь в нервных тканях. Поскольку такая тканеспецифичность в сплайсинге сохранилась в ходе эволюции (характерна и для птиц, и для млекопитающих), можно предположить, что наблюдаемая разница в белках, кодируемых геном src, весьма важна для биологической активности этого регуляторного белка. На рисунке указаны только экзоны, кодирующие белок (экзон 1 формирует

5'-лидерную последовательность мРНК). (По J. В. Levy et al., Моl. Cell Biol. 7: 4142-4145, 1987.)

остаются прежними. Например, одна и та же транскрипционная единица в клетках щитовидной железы дает начало кальцитонину, а в клетках нервной ткани - далекому от него по свойствам пептидному гормон (CGRP - calcitonin-gene-related peptide).

10.4.3. Альтернативный сплайсинг РНК может использоваться для включения и выключения генов [40]

Некоторые гены постоянно транскрибируются во всех клетках, однако из-за существования конститутивного сплайсинга образуемая мРНК кодирует нефункционирующий белок, и ген экспрессируется лишь в тех клетках, где происходит специализированная реакция сплайсинга.

Такой тип генной регуляции особенно хорошо охарактеризовав у дрозофилы. Так, например, свойство Р-элемента (см. разд. 5.6.10) перемещаться лишь в половых клетках, связано с его неспособностью образовывать активную транспозазу в соматических клетках. Это явление в свою очередь обусловлено присутствием в мРНК транспозазы

Рис. 10-52. Каскадные изменения в экспрессии генов, определяющих пол у дрозофилы, зависят от альтернативного сплайсинга РНК. Если отношение числа наборов аутосом к числу Х-хромосом равно единице (в норме это два набора аутосом и две Х-хромосомы), особь развивается в самку; мухи, у которых это отношение равно двум (в норме два набора аутосом и одна Х-хромосома), развиваются как самцы. Это соотношение определяется уже на ранних стадиях развития и затем сохраняется в каждой клетке, Функция генов, представленных на рисунке, как раз и состоит в

передаче информации об этом соотношении другим генам, определяющим фенотип, характерный для того или иного пола. Такие гены функционируют как два альтернативных набора, определяющие свойства, характерные для самки и для самца. Ген dsx (doubl esex - двупол ость) получил свое название благодаря тому, что у мутантов, не экспрессирующих этот ген, работают оба набора, специфичные для самок и для самцов.

На рисунке представлена цепь событий, которые происходят при развитии самок. Стрелки указывают действие каждого гена, участвующего в этом процессе. У самцов гены Sxl, tra и tra2 транскрибируются, но образуют только нефункциональную мРНК, а транскрипт гена dsx сплайсируется, причем в итоге образуется белок, который включает гены, детерминирующие женский путь развития. У самок транскрипт Sxl сплайсируется совершенно по-другому, в результате образуется белок, контролирующий сплайсинг, который, с одной стороны, поддерживает свой собственный синтез, а с другой стороны, включает два гена tra (указано стрелками). В свою очередь, продукты генов tra, действуя кооперативно, меняют схему сплайсинга РНК у транскрипта гена dsx. Получившаяся мРНК гена dsx образует измененную форму белка dsx, которая выключает

гены, определяющие мужской путь развития.

225

Рис. 10-53. Четыре пути альтернативного сплайсинга РНК, которые имели место в эксперименте. В каждом случае одна транскрибированная РНК может сплайсироваться двумя альтернативными способами с образованием двух разных мРНК (1 и 2), Более темным цветом обозначены последовательности РНК, присутствующие в обоих типах мРНК. Прямоугольники, окрашенные светлее, соответствуют последовательностям, имеющимся лишь в мРНК одного типа. Соседние прямоугольники соединены цветными линиями, указывающими на последовательности нитронов. По-видимому, не существует какого-либо простого механизма или единого правила, которые могли бы объяснить,

почему происходит тот или иной выбор. (По A. Andre-adis, М. Е. Gallego, В. Nadal-Ginard, Annu. Rev. Cell Biol. 3: 207-242, 1987.)

интрона, который, по-видимому, удаляется лишь в половых клетках. С помощью генетического анализа выявлен другой пример. Пол мух определяется каскадной активацией генов, каждый из которых ответствен за синтез белка, детерминирующего правильный сплайсинг РНК следующего в этом ряду гена (рис. 10-52). Области ДНК, кодирующие некоторые белки, которые детерминируют пол мухи, клонированы и секвенированы, что в значительной мере облегчило изучение механизмов, регулирующих выбор сайта сплайсинга.

10-23

10.4.4. Механизмы, ответственные за выбор сайта для регулируемого сплайсинга РНК, неизвестны

Полагают, что регулируемые изменения в выборе сайтов сплайсинга РНК осуществляются путем связывания ткане- и геноспецифичных белков или молекул РНК с растущим РНК-транскриптом. Так как выбор сайтов сплайсинга происходит и при конститутивном, и при регулируемом варианте по одним и тем же стандартным консенсусным последовательностям, связывание с определенным компонентом должно менять конформацию транскрипта РНК, с тем чтобы закрыть или открыть сайты сплайсинга, ранее существовавшие в молекуле. Вероятно, тут задействованы сложные механизмы, так как простое предположение о том, что при связывании белка сайт сплайсинга закрывается, не объясняет в достаточной мере, почему наблюдается такое разнообразие продуктов сплайсинга (рис. 10-53). Для изучения молекулярных механизмов регулируемого сплайсинга необходимо реконструировать его в бесклеточной системе, что позволило бы выделить все необходимые компоненты и проанализировать действие каждого из них на сплайсосому.

10.4.5. Изменение сайта, в котором происходит расщепление транскрипта РНК и его полиаденилирование, может менять карбоксильный конец белка [41]

У эукариот З'-конец молекулы мРНК определяется не терминацией синтеза РНК РНК-полимеразой, а в ходе реакции расщепления РНК, которая катализируется дополнительными факторами при элонгации транскрипта (см. разд. 9.4.5). Место такого расщепления может варьировать, при этом изменяется карбоксильный конец получающейся молекулы белка, который кодируется З'-концом мРНК. У прокариот образование более длинного транскрипта РНК приводит лишь к появлению дополнительных аминокислот в белковой цепи. Однако у эукариот при сплайсинге образование более длинного транскрипта может привести к тому, что исходный карбоксильный конец белка будет полностью удален и замещен новым.

С изменением такого типа связано переключение синтеза антител при созревании В-лимфоцитов с мембраносвяз энных на секретирующие формы. В незрелых В-клетках образующиеся антитела связаны с плазматической мембраной, где они служат рецепторами антигенов. Стимуляция антигенами одновременно запускает деление этих клеток и начало секреции ими антител. Секретируемая форма антител отличается от мембраносвязанной только в терминальной части карбоксильного конца: мембраносвязанная форма содержит здесь длинную цепь из гидрофобных аминокислот, пересекающую липидный бислой, а секретируемая форма несет гораздо более короткий фрагмент водорастворимых аминокислот. Таким образом, для переключения с синтеза мембраносвязанных на секретируемые антитела необходима иная нуклеотидная последовательность на З'-конце мРНК.

226

Рис. 10-54. Выбор сайта расщепления РНК и полиаденилирования весьма важен при образовании антител. В нестимулированных В- клетках (слева) образуются длинные транскрипты РНК, и при сплайсинге удаляется последовательность интрона вблизи З'-конца этой молекулы. В результате образуется мРНК, которая кодирует молекулу антитела, связывающуюся с мембраной. Напротив, после стимуляции антигеном (справа) первичный транскрипт РНК разрезается перед акцепторным сайтом сплайсинга последнего экзона. В результате некоторые последовательности

интрона, удалявшиеся из длинного транскрипта, остаются в качестве кодирующих последовательностей в коротком транскрипте. Это те последовательности, которые кодируют гидрофильную карбоксиконцевую часть секретируемой молекулы антитела.

Мембраносвязанная форма белка образуется при транскрипции всех кодирующих последовательностей ДНК с образованием длинного транскрипта. Нуклеотиды, кодирующие длинный гидрофобный карбоксильный конец мембраносвязанного белка, локализованы в последнем экзоне (рис. 10-54, слева). Интрон, предшествующий этому экзону, содержит нуклеотиды, кодирующие водорастворимый хвост секретируемой молекулы; при сплайсинге мРНК они удаляются. Секретируемая форма молекулы образуется с более короткого первичного транскрипта, который заканчивается перед началом следующего экзона. Следовательно, в этом транскрипте перед нуклеотидами, кодирующими водорастворимый хвост, отсутствует акцепторный сайт сплайсинга, который мог бы взаимодействовать с имеющимся донорным сайтом. В результате эти нуклеотиды остаются в образующейся молекуле мРНК (рис. 10-54, справа).

Неизвестно, однако, как контролируется реакция расщепления, определяющая переключение длины транскриптов РНК.

10.4.6. Открытие альтернативного сплайсинга требует пересмотра понятия «ген» [42]

С тех пор, как стало известно, что эукариотические гены содержат интроны, а их кодирующие последовательности можно состыковать по-разному, вновь встал вопрос о том, что следует понимать под словом «ген». Первое определение гена на молекулярном уровне было предложено в начале 40-х гг. на основании изучения биохимической генетики гриба

227

нейроспора. До этого времени геном считали область генома, которая в мейозе обособляется как отдельная единица и ответственна за проявление определенного фенотипического признака, например, белых и красных глаз у дрозофилы или гладких и морщинистых семян у гороха. После работ на нейроспоре стало ясно, что ген, как правило, соответствует области генома, направляющей синтез единственного фермента. На основании этого возникло предположение, что один ген кодирует одну полипептидную цепь. Эта гипотеза оказалась весьма плодотворной. При изучении механизмов экспрессии в 60-х гг. ген стали определять как фрагмент ДНК, который транскрибируется с образованием РНК, кодирующей одну полипептидную цепь (или одну структурную РНК, как например, молекулы тРНК или рРНК). Обнаруженный в конце 70-х гг. феномен прерывистости генов эукариот не противоречил принятым представлениям. Однако теперь нам стало ясно, что в клетках высших эукариот многие последовательности ДНК могут кодировать два и более различных белка благодаря альтернативному сплайсингу. Что же тогда следует считать геном?

В тех относительно редких случаях, когда два сильно различающихся эукариотических белка образуются из одной транскрипционной единицы, говорят, что эти белки кодируются различными генами, которые на хромосоме перекрываются. Однако определение видоизмененных белков, образующихся в результате альтернативного сплайсинга РНК, как продуктов перекрывающихся генов, может показаться излишне усложненным. Проще изменить исходную формулировку и считать геном любую последовательность ДНК, которая транскрибируется как отдельная единица и кодирует набор близкородственных полипептидных цепей (изоформы белков).

10.4.7. Экспорт РНК из ядра может регулироваться [43]

Первичный транскрипт РНК в среднем в 10 раз длиннее, чем зрелая молекула РНК, образующаяся при сплайсинге. Но по некоторым данным пределы клеточного ядра покидает только одна двадцатая часть всей гяРНК (см. разд. 9.4.8). Таким образом, значительная часть первичных транскриптов (вероятно, половина) полностью разрушается в ядре, никогда не образуя молекулу мРНК, предназначенную для переноса. Распаду подвергаются и те молекулы РНК, последовательности которых не могут превратиться в мРНК, и такие молекулы, которые способны соответствующим образом процессироваться лишь в клетках другого типа.

Перенос РНК через ядерные поры представляет собой активный процесс (см. разд. 8.3.3). Если этот процесс зависит от специфического узнавания транспортируемых молекул РНК (либо связавшихся с РНК молекул белка или РНК) белком-рецептором, входящим в состав комплекса ядерной поры, то РНК, не имеющие такого опознавательного знака, будут избирательно задерживаться в ядре. С другой стороны, для переноса РНК могут и не потребоваться опознавательные сигналы, в этом случае автоматически переносится вся РНК, за исключением той, которая избирательно задерживается. Третья возможность заключается в том, что используется и селективный перенос, и селективное задержание. Поскольку любая РНК задерживается в ядре до тех пор, пока с ней связаны компоненты сплайсосомы, селективное задержание может обусловливаться механизмом, препятствующим завершению сплайсинга определенной молекулы РНК. В настоящее время ни одна из этих гипотез не получила четкого экспериментального подтверждения, более того, представляется маловероятным, чтобы транспорт РНК из ядра

228

играл существенную роль в регуляции экспрессии большинства генов у эукариот.

В связи с тем, что вирус использует для своего размножения клеточный аппарат, изучение цикла развития вируса часто помогает понять механизмы клеточных процессов. Например, геном аденовируса представляет собой двухцепочечную молекулу ДНК, которая реплицируется и транскрибируется в ядре клетки-хозяина. На поздних стадиях инфекции транспорт хозяйской РНК из ядра останавливается, в результате большая часть РНК, попадающей в цитоплазму, оказывается принадлежащей аденовирусу. Генетический анализ показал, что для такого изменения в избирательности переноса РНК из ядра необходимы два образующихся на ранних стадиях инфекции аденовирусных белка. Таким образом, взаимодействие аденовируса с клеткой-хозяином может служить перспективной модельной системой для изучения контроля за транспортом РНК.

10-24 10.4.8. Белки, связывающиеся с 5'-лидерной областью мРНК, участвуют в негативном контроле трансляции

[44]

Не все молекулы РНК, достигающие цитоплазмы, транслируются в белок. Трансляция некоторых из них блокируется особыми белкамирепрессорами (рис. 10-55), которые связываются вблизи 5'-конца, там, где должна происходить инициация трансляции. Такой тип регуляции был впервые обнаружен у бактерий, где избыток рибосомных белков может подавлять трансляцию своих собственных мРНК.

В клетках эукариот особенно хорошо изучен тип негативного контроля трансляции, который дает возможность быстро привести в соответствие синтез внутриклеточного белка ферритина с количеством имеющихся в клеточном содержимом атомов железа. Показано, что после добавления железа мРНК ферритина в цитоплазме перемещается из неактивного рибонуклеопротеинового комплекса в трансляционноактивный полирибосомный комплекс. С помощью генной инженерии установлено, что регуляция, направляемая железом, связана с последовательностью размером 30 нуклеотидов, которая расположена на 5'-лидерном конце молекулы мРНК ферритина. Этот элемент, контролирующий ответ на железо, складывается в структуру, состоящую из стебля с петлей (см. рис. 10-60, Б); элемент связывается с регуляторным белком в том случае, если этот белок не соединен с железом. При связывании регуляторного белка с элементом, контролирующим ответ на железо, трансляция любой последовательности РНК, расположенной за этим сайтом, подавляется (рис. 10-55). Добавление железа приводит к диссоциации комплекса РНК— белок, что вызывает увеличение скорости трансляции мРНК в 100 раз.

Рис. 10-55. Негативный контроль трансляции с участием сайт-специфического ДНК-связывающего белка (репрессор трансляции). Связывание этого белка с молекулой мРНК приводит к снижению уровня ее трансляции. Известно несколько примеров контроля на уровне

трансляции такого типа. В данном случае представлен механизм повышения синтеза ферритина при увеличении концентрации свободного железа в клетке (см. также рис. 10-60).

229

10.4.9. Присутствие энхансера трансляции в некоторых вирусных мРНК свидетельствует о существовании механизма позитивного контроля трансляции [45]

В принципе, позитивный контроль трансляции может осуществляться засчет расположенной на мРНК специальной области «трансляционного энхансера», который способен выборочно привлекать рибосомы. Показано, что определенные РНК-вирусы (пикорнавирусы) содержат такую область. Ее присутствие приводит к тому, что трансляция начинается с внутренних сайтов AUG, которые в других случаях в эукариотической клетке не используются для инициации синтеза белка (рис. 10-56).

Позитивный контроль трансляции обнаружен также и в дрожжевых клетках. Генетическими методами были выявлены специфические белки, необходимые для активации трансляции мРНК дрожжевого гена GCN4. В отсутствие этих белков мРНК не транслируется. мРНК гена GCN4 напоминает слабо транслируемые мРНК высших эукариот. Полагают, что трансляция таких мРНК контролируется аналогичным образом. (К этому классу относится около 5% всех охарактеризованных до сих пор мРНК). У таких РНК 5'-лидерная последовательность необычно длинна и содержит серию триплетов AUG, препятствующих трансляции основной кодирующей последовательности, расположенной за сайтом инициации синтеза коротких пептидов. Стоп-кодон, локализованный перед основной кодирующей последовательностью, препятствует сквозному считыванию. Сходным образом, у пикорнавирусов трансляция основной

Рис. 10-56. Схема эксперимента, который демонстрирует существование последовательности РНК в геномах некоторых РНК-содержащих вирусов, выступающей в роли трансляционного энхансера. Геном пикорнавирусов (к которым относится и вирус полиомиелита) представляет собой плюснить РНК, т.е. может служить непосредственно мРНК для синтеза вирусоспецифических белков. У этих вирусов нет нэпа на 5'-конце РНК, который необходим для инициации белкового синтеза на большинстве молекул мРНК. Измеряя уровень белкового синтеза, катализируемого различными рекомбинантными РНК, в молекуле вирусной РНК можно идентифицировать последовательности трансляционных энхансеров длиной несколько

сот нуклеотидных пар. Как показано на схеме, перемещая эту последовательность в середину цепи мРНК, можно вставить рибосому начинать трансляцию с соседнего внутреннего кодона AUG; таким образом, можно обойти правила, которые в норме заставляют начинать белковый синтез только с первого кодона AUG.

Рис. 10-57. Модель позитивного контроля трансляции, согласно которой для интенсивной трансляции мРНК необходимо связывание белка (активатора трансляции). Хотя известно, что трансляция специфических мРНК находится под позитивным контролем, его механизм до конца неясен. Установлено, что позитивный контроль имеет отношение к синтезу коротких пептидов, трансляция которых инициируется перед первым

AUG. Это дает право считать, что в данном случае действует механизм, аналогичный тому, который описан у пикорнавирусов (рис. 10-56).

230

кодирующей последовательности такой мРНК может зависеть от связывания молекул-активаторов трансляции с последовательностями энхансеров трансляции, расположенных вблизи соответствующих кодо-нов AUG, что приводит к повторной инициации трансляции (рис. 10-57). Однако каков механизм подобной активации трансляции, до сих пор неизвестно.

10-25

10.4.10. Многие мРНК-объект контроля на уровне трансляции [46]

Насколько контроль на уровне трансляции распространен у высших эукариот? Согласно некоторым оценкам, таким способом регулируется экспрессия одного гена из десяти. Контроль на уровне трансляции дает возможность клетке быстро и обратимо менять концентрацию белка, не подавляя синтез кодирующей его мРНК (см. разд. 12.4.7). По-видимому, экспрессия некоторых протоонкогенов регулируется именно так.

Особенно важную роль контроль на уровне трансляции играет в оплодотворенных яйцеклетках, где необходимо переключить синтез с белков, присущих ооциту в состоянии покоя, на белки, участвующие в быстром делении клеток. В таких яйцеклетках имеется большой запас мРНК, образовавшейся в ходе созревания ооцита. Многие из этих материнских мРНК до оплодотворения яйцеклетки не транслируются. Изучение яйцеклеток двустворчатых моллюсков показало, что до и после оплодотворения с рибосомами ассоциированы различные мРНК. При трансляции таких мРНК в бесклеточной системе образуются белки, соответствующие определенной стадии созревания яйцеклетки моллюска, однако это происходит лишь тогда, когда сохраняется мРНК в виде рибонуклеопротеина. Если РНК очистить от связанных с ней белков и затем транслировать, разница между белками, синтезированными на мРНК, взятой на разных стадиях, исчезает. Следовательно, фактор, определяющий, будет ли данная мРНК транскрибироваться, должен зависеть от того, как РНК связывается с регуляторними молекулами.

5-8

10.4.11. Сдвиг рамки трансляции приводит к образованию двух белков на одной молекуле мРНК [47]

Контроль на уровне трансляции, описанный выше, влияет на скорость инициации новых полипептидных цепей на молекуле мРНК.

Обычно

Рис. 10-58. Сдвиг рамки при трансляции необходим для образования обратной транскриптазы ретровируса. Вирусные обратная транскриптаза и интеграза образуются при расщеплении большого химерного белка gag-pol, а белки капсида в результате расщепления белка gag, присутствующего в больших количествах. Синтез обоих белков начинается в одной точке, но у gag он заканчивается на стоп-кодоне в той же рамке

считывания, а при сдвиге рамки в направлении — 1 синтезируется химерный белок. Сдвиг рамки обусловлен локальными особенностями в структуре РНК (к ним относится и показанная на рисунке петля РНК), которые приводят к тому, что тРНКLeu, присоединенная к карбоксильному концу растущей полипептидной цепи, время от времени соскальзывает на один нуклеотид назад в рибосоме и спаривается с кодоном UUU вместо UUA, который определял ее включение. Представлена последовательность вируса иммунодефицита человека (ВИЧ-1). (По Т. Jacks et al., Nature 331: 280-283, 1988.)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]