Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Diplom2.docx
Скачиваний:
4
Добавлен:
10.02.2015
Размер:
4.04 Mб
Скачать

Заключение

  1. Проведено детальное мессбауэровские исследования наночастиц core-shell типа созданных в макромолекулах жидкокристаллического дендримера поли(пропилен имина) второй генерации.

  2. Развит и применён модельно-зависимый подход к описанию мессбауэровских спектров наночастиц с учетом их core-shell структуры, получены параметры сверхтонких взаимодействий.

  3. Изучена динамика атомов поверхности наночастиц core-shell типа и определена температура Дебая для поверхностных атомов θД ≈ 80 К.

Список литературы.

  1. Ghosh Chaudhuri R. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications [Text] / R. Ghosh Chaudhuri, S. Paria // Chemical reviews. – 2011. – Т. 112. – №. 4. – P. 2373-2433.

  2. Lien Y. H. Preparation and characterization of thermo sensitive polymers grafted onto silica-coated iron oxide nanoparticles [Text] / Y. H. Lien, T. M. Wu // Journal of colloid and interface science. – 2008. – Т. 326. – №. 2. – P. 517-521.

  3. Santra S. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants [Text] / S. Santra, R. Tapec, N.Theodoropoulou, J. Dobson, A. Hebard, W. Tan, // Langmuir. – 2001. – Т. 17. – №. 10. – P. 2900-2906.

  4. Lee W. Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles [Text] / W. Lee [et al.] // Journal of the American Chemical Society. – 2005. – Т. 127. – №. 46. – P. 16090-16097.

  5. Lee J. Simple Synthesis of Functionalized Superparamagnetic Magnetite/Silica Core/Shell Nanoparticles and their Application as Magnetically Separable High‐Performance Biocatalysts [Text] / J. Lee [et al.] // Small. – 2008. – Т. 4. – №. 1. – P. 143-152.

  6. Wang X. Electrochemical sensing the DNA damage in situ induced by a cathodic process based on Fe@Fe2O3 core-shell nanoparticles and Au nanoparticles mimicking metal toxicity pathways in vivo [Text] / X. Wang, T. Yang, K. Jiao // Biosensors and Bioelectronics. – 2009. – Т. 25. – №. 4. – P. 668-673.

  7. White M. A. “Click” Dielectrics: Use of 1, 3‐Dipolar Cycloadditions to Generate Diverse Core‐Shell Nanoparticle Structures with Applications to Flexible Electronics [Text] / M. A. White [et al.] // Macromolecular Rapid Communications. – 2008. – Т. 29. – №. 18. – P. 1544-1548.

  8. Domracheva N. E. Magnetic Resonance and Mossbauer Studies of Superparamagneticγ- Nanoparticles Encapsulated into Liquid-Crystalline Poly(propylene imine) Dendrimers [Text] / N.E. Domracheva, A.V. Pyataev R.A. Manapov, M.S. Gruzdev // ChemPhysChem. – 2011. – Т. 12. – №. 16. – P. 3009-3019.

  9. Laurent S. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications [Text] / S. Laurent [et al.] // Chemical reviews. – 2008. – Т. 108. – №. 6. – P. 2064-2110.

  10. Sounderya N., Use of core/shell structured nanoparticles for biomedical applications [Text] / N. Sounderya, Y. Zhang // Recent Patents on Biomedical Engineering. – 2008. – Т. 1. – №. 1. – P. 34-42.

  11. Schartl W. Crosslinked spherical nanoparticles with core–shell topology [Text] // Advanced Materials. – 2000. – Т. 12. – №. 24. – P. 1899-1908.

  12. Soppimath K. S. pH‐Triggered Thermally Responsive Polymer Core–Shell Nanoparticles for Drug Delivery [Text] / K. S. Soppimath, D. C. W. Tan, Y. Y. Yang // Advanced materials. – 2005. – Т. 17. – №. 3. – P. 318-323.

  13. De M. Applications of nanoparticles in biology [Text] / M. De, P. S. Ghosh, V. M. Rotello // Advanced Materials. – 2008. – Т. 20. – №. 22. – P. 4225-4241.

  14. Yokoyama M. Drug targeting with nano-sized carrier systems [Text] // Journal of Artificial Organs. – 2005. – Т. 8. – №. 2. – P. 77-84.

  15. Vasir J. K. Nanosystems in drug targeting: opportunities and challenges [Text] / J. K. Vasir, M. K. Reddy, V. D. Labhasetwar // Current Nanoscience. – 2005. – Т. 1. – №. 1. – P. 47-64.

  16. Sounderya N., Use of core/shell structured nanoparticles for biomedical applications [Text] / N. Sounderya, Y. Zhang // Recent Patents on Biomedical Engineering. – 2008. – Т. 1. – №. 1. – P. 34-42.

  17. Knopp D. Review: bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles [Text] / D. Knopp, D. Tang, R. Niessner // Analytica chimica acta. – 2009. – Т. 647. – №. 1. – P. 14-30.

  18. Nayak S. Folate-mediated cell targeting and cytotoxicity using thermo responsive microgels [Text] / S. Nayak [et al.] // Journal of the American Chemical Society. – 2004. – Т. 126. – №. 33. – P. 10258-10259.

  19. Kircher M. F. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation [Text] / M. F. Kircher [et al.] // Cancer research. – 2003. – Т. 63. – №. 23. – P. 8122-8125.

  20. Tan W. Bionanotechnology based on silica nanoparticles [Text] / W. Tan [et al.] // Medicinal research reviews. – 2004. – Т. 24. – №. 5. – P. 621-638.

  21. Pinaud F. Advances in fluorescence imaging with quantum dot bio-probes [Text] / F. Pinaud [et al.] // Biomaterials. – 2006. – Т. 27. – №. 9. – P. 1679-1687.

  22. Qiang Y. Synthesis of core-shell nanoclusters with high magnetic moment for biomedical applications [Text] / Qiang Y. [et al.] // Magnetics, IEEE Transactions on. – 2004. – Т. 40. – №. 6. – P. 3538-3540.

  23. Schartl W. Current directions in core–shell nanoparticle design [Text] // Nanoscale. – 2010. – Т. 2. – №. 6. – P. 829-843.

  24. Stanciu L. Magnetic particle-based hybrid platforms for bioanalytical sensors [Text] / L. Stanciu [et al.] // Sensors. – 2009. – Т. 9. – №. 4. – P. 2976-2999.

  25. Dong B. Synthesis and characterization of the water-soluble silica-coated ZnS:Mn nanoparticles as fluorescent sensor for Cu2 ions [Text] / B. Dong [et al.] // Journal of colloid and interface science. – 2009. – Т. 339. – №. 1. – P. 78-82.

  26. Qiu J. D. Facile preparation of magnetic core–shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry [Text] / J. D. Qiu [et al.] // Biosensors and Bioelectronics. – 2010. – Т. 25. – №. 6. – P. 1447-1453.

  27. Katti K. S. Biomaterials in total joint replacement [Text] // Colloids and Surfaces B: Biointerfaces. – 2004. – Т. 39. – №. 3. – P. 133-142.

  28. Srivastava S. Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires [Text] / S. Srivastava, N. A. Kotov // Accounts of chemical research. – 2008. – Т. 41. – №. 12. – P. 1831-1841.

  29. Zhang X. F. Synthesis, structure and magnetic properties of SiO2-coated Fe nanocapsules [Text] / X. F. Zhang [et al.] // Materials Science and Engineering: A. – 2007. – Т. 454. – P. 211-215.

  30. Yin H. Heterostructured catalysts prepared by dispersing Au@Fe2O3 core–shell structures on supports and their performance in CO oxidation [Text] / H. Yin [et al.] // Catalysis Today. – 2011. – Т. 160. – №. 1. – P. 87-95.

  31. Yao L. H. Core-shell structured nanoparticles (M@ SiO2, Al2O3, MgO; M = Fe, Co, Ni, Ru) and their application in COx-free H2 production via NH3decomposition [Text] / L. H. Yao [et al.] // Catalysis today. – 2010. – Т. 158. – №. 3-4. – P. 401-408.

  32. Maliakal A. Inorganic oxide core, polymer shell nanocomposite as a high K gate dielectric for flexible electronics applications [Text] / A. Maliakal [et al.] // Journal of the American Chemical Society. – 2005. – Т. 127. – №. 42. – P. 14655-14662.

  33. White M. A. “Click” Dielectrics: Use of 1,3‐Dipolar Cycloadditions to Generate Diverse Core‐Shell Nanoparticle Structures with Applications to Flexible Electronics [Text] / M. A. White [et al.] // Macromolecular Rapid Communications. – 2008. – Т. 29. – №. 18. – P. 1544-1548.

  34. Ung T. Controlled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions [Text] / T. Ung, L. M. Liz-Marzan, P. Mulvaney // Langmuir. – 1998. – Т. 14. – №. 14. – P. 3740-3748.

  35. Chen Z. Ag nanoparticles-coated silica–PMMA core-shell microspheres and hollow PMMA microspheres with Ag nanoparticles in the interior surfaces [Text] / Z. Chen [et al.] // Colloids and Surfaces A: Physicochemical and Engineering Aspects. – 2006. – Т. 272. – №. 3. – P. 151-156.

  36. Fitzgerald J. J. Dynamic studies of the molecular relaxations and interactions in microcomposites prepared by in-situ polymerization of silicon alkoxides [Text] / J. J. Fitzgerald, C. J. T. Landry, J. M. Pochan // Macromolecules. – 1992. – Т. 25. – №. 14. – P. 3715-3722.

  37. Ogoshi T. Synthesis of organic-inorganic polymer hybrids having interpenetrating polymer network structure by formation of ruthenium-bipyridyl complex [Text] / T. Ogoshi [et al.] // Macromolecules. – 2002. – Т. 35. – №. 2. – P. 334-338.

  38. Каипов, Д. К. Ядерный гамма-резонанс и сопутствующие ему процессы / Д.К. Каипов. – Алма-Ата: «Наука», КазССР, 1976. 172 с.

  39. Slezak T. Phonons at the Fe (110) surface [Text] / T. Slezak [et al.] // Physical review letters. – 2007. – Т. 99. – №. 6. – P. 066103.

  40. Karas W. CEMS studies of Au/Fe/Au ultrathin films and monoatomic multilayers [Text] / W. Karas [et al.] // physica status solidi (a). – 2002. – Т. 189. – №. 2. – P. 287-292.

  41. Шпинель В. С. Резонанс гамма-лучей в кристаллах / В. С. Шпинель – Наука, 1969.- 407 с.

  42. Jithender L. X-Ray Debye temperature study of Fe2O3 nanoparticles [Text] / L. Jithender, N. G. Krishna // International Journal of Engineering Science & Technology. – 2012. – Т. 4. – №. 6.

  43. Bomatí‐Miguel O. Core–Shell Iron–Iron Oxide Nanoparticles Synthesized by Laser‐Induced Pyrolysis [Text] / O. Bomatí‐Miguel [et al.] // Small. – 2006. – Т. 2. – №. 12. – P. 1476-1483.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]