Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Diplom2.docx
Скачиваний:
4
Добавлен:
10.02.2015
Размер:
4.04 Mб
Скачать

Глава 1. Наночастицы core-shell типа и их приложения

Из всевозможных видов наночастиц, частицы core-shell типа получили наибольшее распространение, прежде всего благодаря простоте приготовления и важным физико-химическим свойствам. Часто ядро и оболочка отличаются не только физически, но и функционально, благодаря чему частица может выполнять сразу несколько функций одновременно. Такие наночастицы имеют огромное число приложений [1]. В биомедицинских целях наночастицы core-shell типа используются, во-первых: как доставщики лекарственных средств [9-12]. Доставка лекарств в нужное место организма получила новое развитие с приходом нанотехнологий. В данном процессе лекарство сначала инкапсулируют в мезопористый материал, который уже имеет специальную поверхность, способную взаимодействовать с клеткой организма [13]. Чтобы выпустить содержимое препарата в клетку, наноноситель распадается для создания химически схожих с клеткой супрамолекулярных «ворот». Такой распад так же может быть стимулирован высокой температурой или светом. Если наночастицы покрыты флуоресцентно активным материалом, то они могут служить датчиками, которые позволяют прослеживать их передвижения и контролировать доставку лекарственных средств. Существует два типа доставки: активная и пассивная. В первом случае лекарство целенаправленно доставляется в нужное место организма, во втором благодаря физико-химическим и фармакологическим факторам лекарственные вещества накапливаются около нужных клеток [14,15]. Для активной доставки магнитные флуоресцентные наночастицы нашли наибольшее применение. Примерами таких наночастиц являются частицы с ядрами (core) железа, никеля, кобальта и суперпарамагнитными окислами железа и специальной биологически безвредной оболочкой (shell). В пустоты полимерного вещества внедряются лекарства и магнитные наночастицы. Такая система, в отличие от голой наночастицы, более биологически совместима и следовательно может быть использована для доставки лекарства, которым можно управлять даже в пределах живой клетки [2-4]. Во-вторых: как вещества, способные маркировать отдельные клетки [16-18].

Наночастицы могут быть использованы для изучения биологических клеток методами оптической и магнитной спектроскопии (ЯМР, ЭПР и т.д.), так как в этих методах оказываются полезными люминесцентные и магнитные свойства наночастиц. В некоторых случаях используют сразу два таких свойства частиц [19,20]. Для маркировки используют квантовые точки: они фотохимически и метаболически стабильны, достаточно ярки и имеют узкий настраиваемый и симметричный спектр. Однако у них есть такие недостатки как: тенденция к фотоокислению, токсичность и низкая растворимость в воде. Эти недостатки могут быть минимизированы путём покрытия их подходящим материаломдля дальнейшего использования [21].

Эффект поверхностного плазмона в Ag использовался для обнаружения опухолевой клетки. Такие наночастицы использовались для обнаружения опухолевых клеток у крыс. После попадания этих частиц на опухоль и воздействия излучением в течение 500 мс, флуоресцентный материал переизлучал и позволял обнаружить злокачественные клетки [19]. Аналогичный подход используется в томографии. Здесь используются магнитные наночастицы с ядром из железа, окиси железа, никеля, кобальта или суперпарамагнитной окиси железа и необходимой для конкретного случая оболочкой. У таких частиц лучшие времена релаксации, после присоединения к клетке они дают лучший контраст изображения [16, 22]. В-третьих: как биодатчики [13,17,19,20,22,23]. Датчики это устройства, которые измеряют физическую величину и конвертирует её из аналогового в цифровой сигнал. В биомедицине наночастицы используют как датчики для обнаружения повреждённых клеток, позволяют изучать свойства ДНК, РНК, глюкозы, холестерина и т.д. Частицу покрывают флуоресцентным веществом, которое может выступать в качестве датчика. Флуоресценция позволяет проследить за частицей, а её магнитные свойства позволяют нагревать нужное место посредством магнитного возбуждения [23]. Магнитные нанокомпозиты покрытые флуоресцентным материалом, металлом, кварцем или полимером используются как биоаналитические датчики [24]. Покрытые кварцем наночастицы ZnS/Mn используются как датчики ионов Cu2+ [25]. Так же нередко используются биметаллические наночастицы core-shell типа, например частицы Au/Ag применяются для обнаружения рака и опухолевых клеток в теле [5]. Главное ограничение таких частиц это требование их хорошего «крепления» с антителами. Такие частицы как Fe/Fe2O3 использовались для обнаружения повреждённой ДНК [6]. Эти частицы прикрепляли к биологически активным белкам [26]. Полимерные core-shell наночастицы используются так же как материал при трансплантациях. Их core-shell структура может быть как полимер/полимер или как полимер/металл. Она, например, используются в зубных скобах– здесь в качестве ядра частицы выступает ультравысокомолекулярный полиэтилен, а оболочка - серебро [27].

Полый TiO2 покрытый высокоплотными полимерами полиакриламида используется для выделение нейромедиаторов из клеток, существующих в головном мозге [28]. Основными свойствами частиц, используемых при трансплантации и регенерации является сопротивление трению, высокая ударная вязкость и сопротивление коррозии. Для таких целей лучше подходят наночастицы состоящие из полимеров, биокерамики и других неорганических веществ [29].

В-четвёртых, в приложениях выращивания тканей [24]. Магнитные частицы, покрытые функциональным материалом, таким как благородный металл, полупроводник или соответствующая окись могут значительно улучшить свои физические свойства (оптические, активность катализатора, электрические, магнитные и тепловые) [29-31]. Химическое превращение из CO в CO2 с использованием нанокатализатора с ядром Au и оболочкой Fe2O3 на подложке из SiO2 протекает намного эффективнее, чем с использованием наночастицы золота без оболочки [30]. Опыты так же показали, что результат не сильно зависит от типа оболочки (SiO2, C, Fe2O3) за исключением TiO2. Аналогично покрытие кварцем металлических ядер наночастиц из Fe, Co, Ni и Ru улучшает катализ при производствеводорода [31].

Наночастицы с ядром или оболочкой сделанными из полупроводника или металла одинаково важны в современной микроэлектронике [32,33]. Полимерные материалы легко обрабатываются, однако имеют малое значение диэлектрической постоянной. Обратными свойствами обладают керамические материалы. Особое место занимает комбинация этих материалов в виде наночастицы core-shell типа с керамическим ядром и тонкой оболочкой из полимера, которая обладает бóльшим значением диэлектрической постоянной, чем чистый полимер, одновременно такие частицы легче обрабатываются. Из-за их высокой ёмкости эти материалы так же используются в электронике [32,33].

Для сохранения физических и химических свойств различных наночастиц их покрывают особой оболочкой, чаще, например, кварцем: инертным материалом химически не взаимодействующим с ядром частицы. Это улучшает стабильность вещества ядра. Кроме того кварц оптически прозрачен для изучения ядра спектроскопическими методами [34].

Создание углеродных оболочек наночастиц из Li3V2(PO4)3 приводит к увеличению эффективности литиевых батарей [17] созданных на основе такого материала. К настоящему времени для наночастиц есть много другихпотенциально перспективных областей: пластмассы, резиновые материалы, чернила и другие [35-37].

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]