Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика визуализации в медицине(16 билетов).docx
Скачиваний:
75
Добавлен:
10.02.2015
Размер:
4.73 Mб
Скачать

5 Билет

1. Принципы получения изображений в ИК диапазоне.

1 вариант Любой объект излучает электромагнитные волны в очень широком диапазоне частот, в том числе и волны в инфракрасном спектре, так называемое «тепловое излучение». При этом интенсивность теплового излучения напрямую зависит от температуры объекта, и лишь в очень малой степени зависит от условий освещенности в видимом диапазоне. Таким образом, при помощи тепловизионного прибора о любом наблюдаемом объекте может быть собрана и визуализирована дополнительная информация, недоступная человеческому глазу и приборам, Тепловизор – устройство, позволяющее визуализировать картину теплового излучения наблюдаемого объекта.

Принцип действия современных тепловизоров основан на способности некоторых материалов фиксировать излучение в инфракрасном диапазоне. Посредством оптического прибора, в состав которого входят линзы, изготовленные с применением редких материалов, прозрачных для инфракрасного излучения (таких как германий), тепловое излучение объектов проецируется на матрицу датчиков, чувствительных к инфракрасному излучению. Далее сложные микросхемы считывают информацию с этих датчиков, и генерируют видеосигнал, где разной температуре наблюдаемого объекта соответствует разный цвет изображения. Шкала соответствия цвета точки на изображении к абсолютной температуре наблюдаемого объекта может быть выведена поверх кадра. Также возможно указание температур наиболее горячей и наиболее холодной точки на изображении. В зависимости от модели тепловизоры различаются по величине шага измеряемой температуры. Современные технологии позволяют различать температуру объектов с точностью до 0,05-0,1 К.

2 вариант Методы обнаружения и измерения И. и. основаны на преобразовании энергии И. и. в др. виды энергии, методы регистрации к-рых хорошо разработаны. В тепловых приёмниках поглощённое И. и. вызывает повышение темп-ры термочувствит. элемента, к-рое тем или иным способом регистрируется. Тепловые приёмники могут работать практически во всей области И. и. В фотоэлектрич. приёмниках поглощённое И. и. приводит к появлению или изменению электрич. тока или напряжения. Такие приёмники в отличие от тепловых селективны, т. е. чувствительны лишь в определ. ИК-области спектра. Мн. фотоэлектрич. приёмники И. и. особенно для средней и далёкой ИК-области спектра работают лишь в охлаждённом состоянии. В качестве приёмников И. и. также используются приборы, основанные на усилении или тушении люминесценции, под действием И. и., а также т. н. антистоксовы люминофоры, непосредственно преобразующие И. и. в видимое (люминофор с ионами Yb и Еr преобразует излучение неодимового лазера l=1,06 мкм в видимое с l=0,7 мкм). Спец. фотоплёнки и пластинки - инфрапластинки - также чувствительны к И. н. (до l=1,3 мкм). Существуют также спец. приборы, к-рые позволяют путём регистрации собств. теплового И. и. получить распределение темп-ры по поверхности объекта, т. е. его тепловое (или температурное) изображение. Это т. н. тепловое изображение можно преобразовать в видимое изображение, в к-ром яркость видимого изображения в отд. точках пропорциональна темп-ре соответствующих точек объекта. Изображение, полученное в этих приборах, не является ИК-изображением в обычном смысле, т. к. даёт лишь картину распределения темн-ры на поверхности объекта. Приборы визуализации И. и. делятся на несканирующие и сканирующие. В первых И. и. регистрируется непосредственно на фотоплёнке или люминесцентном экране, а также на экране с помощью электроннооптических преобразователей (ЭОП) или эвапорографов. К сканирующим приборам относятся тепловизоры или термографы с оптико-механич. сканированием объекта. Область чувствительности ЭОП определяется чувствительностью к И. и. фотокатода и не превышает l=1,3 мкм. Эвапорографы и тепловизоры могут быть использованы в средней ИК-области, и потому они позволяют получать тепловое изображение низкотемпературных тел. Существуют также методы параметрич. преобразования И. и. в видимое излучение при смешивании И. и. с когерентным лазерным излучением в оптически нелинейных кристаллах

2 . Качество и методы улучшения изображений в системах рентгенодиагностики

Качество рент-х изо-й во многом опред. его контрастом. Контраст ухудшается под действием рассеянного излучения, поэтом это излуч. необходимо уменьшать. Интенсивность рассеяния возрастает с увеличением площади изображаемой области и толщины облучаемого объекта. Отношение интенсивностей рассеянного и первичного излучений Rдля детектора увеличивается с энергией фотонов и в процессе регистрации изображения.

Для снижения уровня рассеянного излучения общепринято использовать сетки. Недостатками использования сеток является то, что увеличиваются требования к экспозиции. К другим методам подавления рассеянного излучения относятся методы с использованием воздушного промежутка и сканирующей щели.

Контраст в изображении можно искусственно улучшить, вводя в организм пациента рентгеноконтрастное вещество. Однако некоторые обследования с использованием этих веществ сопряжены с риском для пациента. Для повышения контраста изображений можно применить метод цифровой рентгенографии и уменьшить таким образом необходимость в использовании контрастных веществ.

Контраст можно также повысить , используя пленки с большей крутизной линейного участка характеристической кривой, имеющей пониженную чувствительность при высоких оптических плотностях (область насыщения) , а так же при низких оптических областях( область вуали). Для получения максимального контраста пленка должна экспонировать до оптических плотностей , лежащих между этими двумя областями. Точная подгонка плотностей почернения пленки может проводиться с помощью радиопрозрачных ионизационных камер, прерывающих процесс экспонирования пленки в момент получения камерой заранее установленной дозы излучения.

Сетки: Для уменьшения интенсивности падающего на детектор рассеянного излучения применяют специальные сетки, которые обладают направленным действием и состоят обычно из очень тонких свинцовых полосок, разделенных хлопчатобумажной тканью(сетки для низких энергий фотонов) или же полосками пластмассы или алюминия(сетки для высоких энергий квантов).

Поскольку рассеянное излучение падает на сетку не под прямым углом, оно сильнее поглощается свинцовыми полосками, тогда как первичное излучение проходит сквозь сетку без поглощения. Из-за поглощения части первичного и большей части вторичного излучений свинцовыми и разделительными полосками при работе с сеткой необходимо увеличивать время экспозиции.

Метод сканирующей щели:В данном методе испол. 2 узкие поперечные щели шириной около 1мм, устанавливаемые выше и ниже пациента и перемещающиеся совместно с узким веерным рентгеновским пучком, создаваемые при сканировании трубки вдоль тела пациента. Рассеянное излучение, возникающее в теле пациента , отсекаются коллиматором кассеты. По сравнению с методом сеток удается добиться более низких доз облучения , поскольку при этом отсутствует поглощение первичного излучения в коллиматорах. К сожалению, большое время сканирования может привести к размытию изображения в связи с движением пациента.

Рентгеноконтрастные вещества.:Некоторые анатомические структуры могут иметь близкие плотности и атомные номера с окр их биотканями, поэтому их невозможно различить рентгеноскопическим методом. Однако в ряде случаев можно ввести в организм специальный рентгеноконтрастный препарат, который имеет отличный от нормальной биоткани коэф ослабления излучения и. следовательно, позволяет получить изображение исследуемого органа. Препарат должен иметь плотность либо ниже либо выше плотности окр биотканей. Вещество должно быть нетоксичным , иметь вязкость для инъекции или приема внуть. Должно сохр свои свойства в течении всего времени обследования.

Крутизна характеристической кривой фотопленки

Зависимость оптической плотности фотопленки от логарифма экспозиции изо на рис. и наз. характеристической кривой.

На кривой можно веделить 2 участка, обл высоких оптических плотностей(насыщения) и область низких(вуали). Т.к. контраст пропорционален производной от плотности по экспозиции, в указ областях будет наблюдаться ухудшение контраста. Поэтому пленку необходимой экспонировать такиб образом, чтобы значения оптических плотностей изображения соответствовали линейному участку хар-ой прямой. очевидно, что для повышения контраста желательно использовать пленку с большей крутизной линейного участка хар-ой кривой. к сожалению, с увеличением крутизны возрастают требования к экспозиции, поскольку при этом уменьшается динамический диапазон фотопленки.

Интенсивность излучения, необходимая для получения требуемого почернения пленки, зависит от напряжения на рентгеновской трубки , расстоянии между фокусом трубки и пленкой , а так же от комплекции пациента. Правильный выбор экспозиции осуществляется с помощью радиопрозрачной ионизационной камеры, устанавливаемой между сеткой и пленкой. Экспонирование прекращается как только на камеру проходит предварительно установленная доза облучения. Системы подобного типа иногда наз ионтоматическими, и они обычно состоят из трех ионизационных камер, каждая из которых предназначена для диагностики различных областей тела пациента.

Если динамический диапазон оптических плотностей в изображении достаточно велик, то иногда оказывается выгодным использовать пленку с меньшей крутизной линейного участка хар-ой кривой, поскольку при этом мала вероятность того, что оптические плотности в изображении попадут в область вуали или насыщения.