Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика визуализации в медицине(16 билетов).docx
Скачиваний:
75
Добавлен:
10.02.2015
Размер:
4.73 Mб
Скачать

Билет 3

1. Детекторы радиоактивного излучения. Радионуклиды, применяемые при визуализации.

Сцинтилляционные детекторы. В основе сцинтилляционных детекторов лежат вещества, излучающие свет в видимом диапазоне (или вблизи него) при поглощении энергии ионизирующего излучения. Они используются как для регистрации (счёта) частиц, так и для визуализации с помощью радиоизотопов.

Гамма-камера. основной инструмент современной радионуклидной диагностики. Гамма-камеры предназначены для визуализации и исследования кинетики радиофармпрепаратов во внутренних органах и физиологических системах организма пациента с целью ранней диагностики онкологических, сердечно-сосудистых и других заболеваний человека.

Полупроводниковые детекторы - детектор элементарных частиц, который использует полупроводники (обычно кремний или германий) для обнаружения заряженных частиц или фотонов высоких энергий (ионизирующего излучения). Принцип их действия аналогичен газоразрядным приборам, с тем отличием, что ионизируется объем полупроводника между двумя электродами.

Радионуклидная диагностика заключается в анализе информации, полученной после введения в организм пациента определенного химического или биохимического соединения, меченного гамма-излучающим радионуклидом, с последующей регистрацией пространственно-временного распределения этого соединения в организме с помощью позиционно-чувствительного детектора гамма-излучения. Конечным результатом функциональных радионуклидных исследований является совокупность временных гистограмм (гамма-хронограмм). Полученные в лаборатории статические изображения изучаемого органа свидетельствуют о наличии и размере патологической области с аномальным распределением радиофармпрепарата.

Метод дает информацию о функциональной активности ткани.

Критерии выбора радионуклида (радиофармпрепарат)

  • позволяет получить максимум диагностической информации при минимальной лучевой нагрузке на больного. Желательно выбирать такой РФП, который быстро поступает в исследуемый орган и быстро выводится из организма, тем самым снижая лучевую нагрузку.

  • По физическим характеристикам он должен обладать коротким периодом полураспада. Быстрый распад нуклида также обеспечивает безопасность исследования.

  • К числу основных требований следует отнести наличие у нуклида гамма-излучения; удобного для наружной регистрации.

  • РФП, вводимые внутрь организма, не должны содержать токсических примесей или радиоактивных веществ, которые в процессе распада образуют долгоживущие дочерние нуклиды.

2. Клинические применения рентгеновской компьютерной томографии.

1972-1973гг ­­– Первые клинические испытания КТ – компьютерного рентгеновского томографа.

1979 г. Годфри Ньюболд Хаунсфилд и Алан Кормак за создание метода диагностики РКТ получили Нобелевскую премию.

Схематически метод можно представить следующим образом: при томографической регистрации изображения какого-либо слоя объекта источник излучения (например, рентгеновская трубка) движется прямолинейно или по кругу в плоскости Х0 параллельно регистрируемому слою Х1 над объектом. Регистрирующий материал, обычно фотопленка, движется позади объекта в плоскости Х2, также параллельной к плоскости движения источника, по аналогичным траекториям, но в обратном направлении. Этим достигается стабилизация положения регистрируемого слоя на фотоматериале с одновременным размазыванием очертания других слоев.

Принцип КТ заключается в создании с помощью вычислительной машины послойных изображений исследуемого объекта на основе измерения коэффициентов линейного ослабления излучения, прошедшего через этот объект.

При рентгеновской КТ происходит послойное поперечное сканирование объекта коллимированным (суженным) пучком рентгеновского излучения. Излучение регистрирует система специальных детекторов с последующим формированием с помощью компьютера полутонового изображения на экране монитора.

Компьютерная томография (КТ) - современный метод лучевой диагностики, позволяющий получить послойное изображение любой области человека толщиной среза от 0,5мм до 10мм, оценить состояние исследуемых органов и тканей, локализацию и распространенность патологического процесса.