Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика визуализации в медицине(16 билетов).docx
Скачиваний:
75
Добавлен:
10.02.2015
Размер:
4.73 Mб
Скачать

Фазочувствительный детектор

Фазочувствительным детектором является устройство, которое отделяет сигналы Mx' и My' от сигнала РЧ катушки. Таким образом, его можно представить как преобразователь лабораторной системы координат во вращающеюся. Основой фазочувствительного детектора является устройство, получившее название двойного балансированного преобразователя частоты. Двойной балансированный преобразователь частоты имеет два входа и один выход. Если сигналами на входе являются Cos(A) и Cos(B), то на выходе получаются 1/2 Cos(A+B) и 1/2 Cos(A-B). Поэтому, это устройство часто называют детектором произведения, так как произведением Cos(A) и Cos(B) является то, что получается на выходе. 

Фазочувствительный детектор обычно состоит из двух двойных балансированных преобразователей частоты, двух фильтров, двух усилителей и 90o преобразователя фазы. На устройстве имеются два входа и два выхода. На входы подаются частоты и o и на выходе получают составляющие поперечной намагниченности MX и MY.

Билет 8. Рентгенодиагностические системы получения изображения

Рентгеновское изображение формируется в результате взаимодействия квантов рентгеновского излучения с приемником и представляет собой распределение квантов, которые прошли через тело пациента (рисунок 5.7).

В и Е - кванты, которые прошли через тело пациента без взаи­модействия; С и D — рассеянные кванты. квант D отсеивается сеткой, препятствующей рассеянному излучению, квант Апоглощается в теле.

Рисунок 5.7 - Компоненты системы для получения рентгеновских изображе­ний.

Кванты делятся на:

1.      первичные В и Е, которые прошли через тело пациента, непровзаимодействовав с ним

2.      вторичные Д и С, которые провзаимодействовали с телом, рассеялись и отклонились от направления первоначального распространения  

Очевидно, что вторичные кванты С и Д не несут полезной информации и их надо как-то фильтровать. Для этого вводится устройство, называемое сеткой – свинцовые ячейки, на которых задерживаются рассеянные кванты. Первичные тоже задерживаются, но если не задерживать вторичные кванты, то получится серое изображение. Нас интересуют только первичные кванты, которые несут информацию о вероятности того, что квант проходит через тело пациента без взаимодействия.

Рассмотрим простую математическую модель процесса получения рентгенографического изображения, представленную на рисунке 5.7.

Пусть нам дан монохроматический рентгеновский источник, излучающий кванты с энергией Е, расположенный достаточно далеко от пациента, так чтобы считать пучок параллельный оси Z.

Изображение регистрируется в плоскости XY.

N - число квантов, падающих на единицу площади пациента (должно быть минимальным) I(x,y)dxdy – энергия поглощаемая приемником площадью dxdy

Рисунок.5.8 - Простая модель получения рентгеновского изображения, по­казывающая распространение первичных и вторичных (рассеянных) квантов

Справедливо соотношение:

где      Е – энергия кванта;

Iперв. кв. – интенсивность первичных квантов;

Iвтор. кв. – интенсивность вторичных квантов;

(x,y,z) – линейный коэффициент ослабления излучения в тканях. ;

А1, А2 – точки входа и выхода излучения из тела пациента ;

 – коэффициент поглощения энергии прибора регистратором (зависит от Е и от угла прихода кванта ):

1.      для первичных квантов угол равен нулю и энергия равна Е

2.      для вторичных квантов угол произволен (), энергия тоже меняется в некоторых пределах

S – функция, характеризующая рассеивающие свойства вещества ;

 – вариация угла рассеяния;

Функция рассеивания S зависит от распределения тканей и их положения в организме. Многочисленные экспериментальные исследования и теоретические расчеты позволили (для тела человека) установить следующее соотношение:

                                      (5.10)

                                                           преобразование Радона

где,

R – отношение рассеянного излучения к первичному (эта константа определяется либо путем измерений, либо расчетным путем).

Контраст МРТ изображений и способы получения контраста по различным параметрам.

Рассмотрим простейшую модель объекта, представленную на рисунке 5.12




С – контраст ,

1 – энергия, поглощенная приемником за пределом мишени

2 – энергия, поглощенная приемником  после прохода через мишень

Рисунок 5.12 -   Простая модель для оценки величины контраста.

Тело пациента заменяется однородным блоком ткани толщиной  с линейным коэффициентом ослабления . Внутрь этого блока помещается другой блок ткани (называемой "мишенью") толщиной  с линейным коэффициентом ослабления . Ткань мишени – это тот объем, который необходимо визуализировать с большой четкостью в проекционной рентгенографии. Контраств изображении ткани мишени определяется с помощью функций распределения изображения  и , которые дают энергию, поглощенную единицей площади поверхности приемника соответственно за пределами изображения ткани мишени и внутри него

 При использовании выражения (5.1) получаем:

где 2 , 1 – линейный коэффициенты поглощения.

Таким образом к факторам влияющим на контраст С изображения относятся толщина ткани мишени х и разность линейных коэффициентов поглощения (2-1), также отношение интенсивности рассеянного излучения к первичному R.

Нерезкость рентгенографической системы изображения важный фактор, определяющий  процесс формирования изображения проекций, зависящий от конструктивных особенностей рентгеновской трубки, свойств приемника и движений пациента.

Контраст равнозначен глубине модуляции, а нерезкость – смазу передаточной функции изображения. Наиболее полно свойства рентгенографической системы определяются передаточной функцией системы. В настоящее время для каждой изображающей системы строится ее передаточная функция или кривая контраст-размер.

Наиболее общим методом определения процесса формирования изображения является измерение модуляционной передаточной функцией. Модуляционную передаточную функцию измеряют при помощи тест объекта в виде решетки.

На рисунке 5.13 приведены кривые зависимости контраста от энергии квантов для двух видов биотканей, представляющих особый интерес для маммографических исследований. Эти кривые показывают, что контраст резко уменьшается с увеличением энергии квантов, так что для получения большего контраста необходимо использовать излучение низкой энергии. Однако, как уже упоминалось выше, последнее требование влечет за собой высокую дозу облучения пациента, и поэтому должен быть найден компромисс между достаточным контрастом и наименьшей дозой облучения.

Верхняя кривая - для микрокальцинатов (гидроксифосфата кальция) размером 100 мкм; нижняя кривая  - желе­зистой ткани размером 1 мм. Контраст определяется по отношению к тканям молочной железы в норме. Снижением кон­траста за счет рассеяния пренебрегаем.

Рисунок 5.13 -  Изменение контраста с энергией для двух  наиболее важных для маммографии сред

Томография позволяет резко увеличить контраст изображения, из-за того, что через любую точку проходит много лучей под разными углами.

Простой расчет позволяет указать те ткани, которые можно различить с помощью обычной трансмиссионной рентгеновской аппаратуры. Коэффициенты линейного ослабления в воздухе, костной и мышечных тканях, а также в крови имеют соответственно следующие значения:

для типичного энергетического спектра излучения рентгеновских аппаратов. Ослабление первичного рентгеновского пучка слоем мягкой ткани с полостью внутри размером 1 см можно вычислить непосредственно, используя выражение  .

Обычные рентгеновские пленки позволяют визуально легко различить контраст порядка 2%, так что ребро толщиной 1 см или же заполненная воздухом трахея диаметром 1 см могут быть визуализированы. Однако кровь в кровеносных сосудах и иные тонкие структуры мягких тканей различить с помощью обычного рентгеновского аппарата не удается. Действительно, чтобы сделать видимыми кровеносные сосуды, в кровь необходимо ввести жидкое контрастное вещество, содержащее соединение йода; эти вещества на время увеличивают линейный коэффициент ослабления жидкой среды до такой величины, что возникает требуемый контраст.