Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на экзамен по общей биологии.docx
Скачиваний:
182
Добавлен:
16.12.2022
Размер:
4.07 Mб
Скачать

11.Основные типы взаимодействия аллельных генов.

Полное доминирование — взаимодействие, при котором доминантный аллель полностью подавляет проявление рецессивного аллеля Неполное доминирование - в этом случае доминантный признак проявляется только при наличии двух доминантных аллелей в генотипе (АА). Если же организм гетерозиготен (Аа), т. е. имеет лишь один доминантный аллель, в фенотипе проявляется признак, промежуточный между доминантным и рецессивным. В случае кодоминирования у гетерозиготных особей полностью проявляются оба аллельных гена. Классическим примером кодоминирования является взаимодействие генов у человека с кровью четвертой группы.

12.Основные типы взаимодействия неаллельных генов

Комплементарность это такой тип взаимодействия неаллельных генов, когда один доминантный ген дополняет действие другого неаллельного доминантного гена (комплементарность), и они вместе определяют новый признак, который отсутствует у родителей. Причем соответственный признак развивается только в присутствии обоих неаллельних генов.

Эпистаз - взаимодействие двух неаллельных (т. е. относящихся к разным локусам) генов, при котором один ген, называемый эпистатичным или геномсупрессором, подавляет действие другого гена, называемого гипостатичным. Эпистатическое взаимодействие генов по своему характеру противоположно комплементарному. В случае комплементарного взаимодействия происходит дополнение одного гена другим. Эпистатическое действие генов по своему характеру очень похоже на явление доминирования, разница состоит лишь в том, что при доминировании аллель подавляет проявление рецессивного аллеля, принадлежащего той же самой аллеломорфной паре. При эпистазе же аллель одного гена подавляет проявление аллеля из другой аллеломорфной пары, т. е. неаллельного гена. Кумулятивная по лимерия - каждый ген в отдельности имеет слабое действие (слабую дозу), но количество доз всех генов в конечном итоге суммируется, так что степень выраженности признака зависит от числа доминантных аллелей. (пример: цвет кожи - в генотипе коренных жителей Африки имеются преимущественно доминантные аллели (Р1Р1Р2Р2Р3Р3Р4Р4), у представителей европеоидной расы - рецессивные (p1p1p2p2p3p3p4p4). От брака негра и белой женщины рождаются дети с промежуточным цветом кожи - мулаты (Р1р1Р2р2Р3р3Р4р4)).

13. Строение молекулы днк (модель Уотсона-Крика), ее биологическое значение.

ДНК состоит из нуклеотидов, в состав которых входят сахар — дезоксирибоза, фосфат и одно из азотистых оснований — пурин (аденин или гуанин) либо пиримидин (тимин или цитозин).

Особенностью структурной организации ДНК является то, что ее молекулы включают две полинуклеотидные цепи, связанные между собой определенным образом. В соответствии с трехмерной моделью ДНК, предложенной в 1953 г. американским биофизиком Дж. Уотсоном и английским биофизиком и генетиком Ф. Криком, эти цепи соединяются друг с другом водородными связями между их азотистыми основаниями по принципу комплементарности. Аденин одной цепи соединяется двумя водородными связями с тимином другой цепи, а между гуанином и цитозином разных цепей образуются три водородные связи. Такое соединение азотистых оснований обеспечивает прочную связь двух цепей и сохранение равного расстояния между ними на всем протяжении.

Другой важной особенностью объединения двух полинуклеотидных цепей в молекуле ДНК является их антипараллельность: 5'-конец одной цепи соединяется с 3'-концом другой, и наоборот.

Данные рентгеноструктурного анализа показали, что молекула ДНК, состоящая из двух цепей, образует спираль, закрученную вокруг собственной оси. Диаметр спирали составляет 2 нм, длина шага — 3, 4 нм. В каждый виток входит 10 пар нуклеотидов.

Чаще всего двойные спирали являются правозакрученными — при движении вверх вдоль оси спирали цепи поворачиваются вправо. Большинство молекул ДНК в растворе находится в правозакрученной — В-форме (В-ДНК). Однако встречаются также левозакрученные формы (Z-ДНК). Какое количество этой ДНК присутствует в клетках и каково ее биологическое значение, пока не установлено.

В 1953 году Джеймс Уотсон и Френсис Крик предложили модель структуры ДНК, которая с тех пор многократно проверялась и признана правильной в целом и во многих деталях. Их модель основывалась на четырех группах данных.

1. ДНК представляет собой полимер, состоящий из нуклеотидов, соединенных 3'-5'-фосфодиэфирными связями. 2. Состав нуклеотидов в ДНК подчиняется правилам Чаргаффа. 3. Рентгенограммы волокон ДНК, впервые полученные Морисом Уилкинсом и Розалиндой Франклин, указывают на то, что молекулы обладают спиральной структурой и содержат более одной полинуклеотидной цепи. 4. Кислотно-щелочное титрование нативной ДНК показывает, что ее структура стабилизируется водородными связями. Титрование и нагревание нативной ДНК вызывают заметные изменения ее физических

Таким образом, в структурной организации молекулы ДНК можно выделить первичную структуру —полинуклеотидную цепь, вторичную структуру—две комплементарные друг другу и антипараллельные полинуклеотидные цепи, соединенные водородными связями, и третичную структуру — трехмерную спираль с приведенными выше пространственными характеристиками.

Модель Уотсона - Крика позволяет представить себе, как может удваиваться нативная молекула ДНК, образуя две одинаковые дочерние молекулы. Поскольку две цепи ДНК комплементарны, каждая из них при расплетании двойной спирали может служить матрицей для синтеза новой комплементарной цепи. Последовательность оснований во вновь синтезируемой цепи будет определяться спецификой водородных связей между основаниями цепи-шаблона и вновь образуемой цепи.

Таким образом, генетическая информация, содержавшаяся в последовательности пар оснований родительской молекулы, будет полностью воспроизведена в двух дочерних молекулах. Более того, если в процессеудвоения ДНК произошла ошибка и какой-то нуклеотид во вновь образуемой цепи выпал или оказался некомплементарным исходному, то это может изменить информационное содержание молекулы, причем можно ожидать, что эта ошибка будет передана дочерним молекулам ДНК в следующих поколениях. Такая замена пары нуклеотидов может обладать свойствами генетических мутаций.

Таким образом, модель структуры ДНК Уотсона и Крика объясняет как способность генов к самоудвоению (репликации), так и их информационные свойства.