Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на экзамен по общей биологии.docx
Скачиваний:
182
Добавлен:
16.12.2022
Размер:
4.07 Mб
Скачать

6. Основные сходства и различия между растительными и животными клетками.

Растительная клетка

Животная клетка

Различия

  1. Клеточная стенка из целлюлозы

  2. Есть пластиды

  3. Запасное вещество крахмал

  4. Крупные вакуоли

  5. Автотрофный тип питания

  6. Клеточный центр только у низших растений

  7. Синтез АТФ в пластидах и митохондриях

  8. Хранение питательных веществ в вакуолях

  9. Нет центриолей

  10. При делении образуется перегородка между дочерними клетками

  1. Клеточная стенка отсутствует

  2. Пластид нет

  3. Запасное вещество гликоген

  4. Мелкие сократительные вакуоли

  5. Гетеротрофный тип питания

  6. Клеточный центр у всех

  7. Синтез АТФ только в митохондриях (что в принципе логично..)

  8. Хранение питательных веществ в виде включений цитоплазмы

  9. Есть центриоли

  10. При делении образуется перетяжка между дочерними клетками

Сходства

Есть цитоплазматическая мембрана, ядро с мембраной и порами, линейные хромосомы, цитоплазма, в цитоплазме присутствуют мембранные и немембранные органеллы, способны к митозу и мейозу, сходство химического состава

7.Генетика, ее возникновение и предмет изучения

Генетика (от греч. genesis — происхождение) — наука о наследственности и изменчивости организмов. Впервые термин «генетика» был введен У. Бэтсоном в 1906 г. Генетика изучает два неразрывных свойства живых организмов: наследственность и изменчивость, а также методы управления ими. Поэтому именно наследственность и изменчивость являются предметом генетики. Законы генетики применимы ко всем без исключения организмам, а ее методы широко используются различными биологическими науками: биохимией, зоологией, ботаникой, микробиологией, вирусологией, иммунологией, физиологией, экологией и т. д.

Генетика – относительно молодая наука, зародилась она в 19 ст., и развивается до сегодняшних дней.

Выделяют три основных этапа в развитии генетики:

Этап I. Изучение наследственности и изменчивости на организменном уровне.

Первый этап связан с Грегором Менделем и открытием законов наследственности. Многочисленные исследования и скрещивания животных и растений уже вначале XX ст. полностью подтвердили теории, выдвинутые Менделем. Вклад в развитие генетики сделал биолог В. Иоганнсен, который описал такие понятия как «генотип», «фенотип» и «популяция». В 1901–1903 гг. де Фриз выдвинул мутационную теорию изменчивости, которая сыграла большую роль в дальнейшем развитии генетики.

Этап II. Изучение закономерностей наследования признаков на хромосомном уровне.

Второй этап начался с изучения генетики на клеточном уровне. Исследуя строение клетки, удалось установить, что гены являются участками гомологичных хромосом, которые в процессе деления распределяются между дочерними клетками. В этот период Т.Г.Морганом было открыто явление кроссинговера, который играет важную роль в механизме наследственной изменчивости. Эти открытия позволили сформулировать хромосомную теорию наследственности.

Этап III. Изучение наследственности и изменчивости на молекулярном уровне.

Третий этап характеризуется достижениями в сфере молекулярных наук, которые позволили изучать закономерности генетики на уровне бактерий и вирусов. Была выдвинута теория, которая гласит, что один ген отвечает за один фермент. Фермент катализирует определенную реакцию, среди множества других, которая отвечает за формирование признака.

В 1953 г. Ф. Крик и Дж. Уотсон создали модель молекулы ДНК в виде двойной спирали и объяснили способность ДНК к самоудвоению. Стал понятен механизм изменчивости: любые отклонения в структуре гена, однажды возникнув, в дальнейшем воспроизводятся в дочерних нитях ДНК.

В XXI веке начала развиваться генная инженерия, которая дает возможность создавать собственные генетические системы. Это позволило выделять гены из одних участков и внедрять их в генетический аппарат других организмов. Так генная инженерия стала занимать важное место в селекции растений и животных, в медицине при изучении врожденных заболеваний, аномалий развития.

Наследственность – это свойство живых организмов передавать свои признаки и особенности развития в неизменном виде следующему поколению. Каждый вид растения и животного сохраняет в процессе размножения характерные для него черты. Некоторые виды сохраняются в течение сотен миллионов лет в относительно постоянном виде. Наличие семейств, родов, видов и других таксономических единиц обусловлено явлением наследственности. Наследственность неразрывно связана с процессом размножения, а размножение с делением клетки и воспроизведением ее структур и функций. Наследственность обеспечивает организму не только передачу признаков потомству, но и точное сохранение характерного для данного организма типа развития, т. е. проявление в ходе онтогенеза запрограммированных признаков и особенностей организма, сохранение постоянного типа обмена веществ.

Под изменчивостью понимают способность организмов приобретать признаки и свойства, отличные от родительских, характерных для данного вида. Изменчивость является общим свойством всех живых систем и может выражаться в изменении как генотипа, так и фенотипа.

Существует несколько типов изменчивости: ненаследственная, наследственная и онтогенетическая.

1) Ненаследственная, модификационная (фенотипическая) изменчивость - изменения фенотипа организма, обусловленные влиянием факторов внешней среды. Данный вид изменчивости не приводит к изменениям генотипа особи - все изменения касаются только фенотипа. Для модификационной изменчивости характерен групповой характер, она часто (но не всегда) служит приспособлением к условиям внешней среды. Известным примером модификационной изменчивости является изменение окраски шерсти у зайца-беляка в зависимости от сезона года. Такое изменение окраски делает их более приспособленными, повышает выживаемость: заяц сливается с внешней средой и становится незаметен для хищников. Однако не стоит забывать об относительности любой приспособленности: если среда резко изменится, то белый заяц на фоне темной земли станет легкой добычей для хищников. Загар также является типичным примером модификационной изменчивости. Одни люди загорают быстро, у других этот процесс занимает гораздо больше времени - все дело в норме реакции.

*Нормой реакции называют генетически (наследственно) закрепленные пределы (границы) изменчивости признака. Принято говорить, что у каждого признака существует определенная норма реакции: она может быть узкой или широкой.

Узкая норма реакции характерна для признаков, которые относятся к качественным: форма глаза, желудка, сердца, размеры головного мозга, рост.

Количественные признаки имеют широкую норму реакцию и достаточно вариабельны в течение жизни: яйценоскость кур, удойность коров, вес, размер листьев.

Для фенотипической (ненаследственной, групповой, определенной) изменчивости характерно:

  1. Причина изменения - влияние факторов внешней среды

  2. Изменения признаков организма не затрагивают генотип, происходят в соматических клетках и не передаются потомкам

  3. Изменение признаков ограничено в пределах нормы реакции, которая определяется генотипом

  4. Изменчивость носит групповой характер, характерна для многих особей (к примеру, сезонная изменчивость)

2) Наследственная изменчивость (неопределенная, индивидуальная, генотипическая) - форма изменчивости, вызванная изменениями генотипа организма, которые могут быть связаны с мутационной или комбинативной изменчивостью. В отличие от модификационной изменчивости, где затрагивается только фенотип (внешние проявления), генотипическая изменчивость затрагивает генотип, а это означает, что генетические изменения затрагивают и половые клетки, которые передаются потомству. Поэтому и называется она - наследственная.

Комбинативная изменчивость возникает в результате появления у потомков новых сочетаний генов (комбинаций). Запомните, что в основе комбинативной изменчивости лежит три краеугольных момента:

  • Случайная комбинация генов в ходе кроссинговера

  • Независимое расхождение хромосом в мейозе

  • Случайная встреча гамет при оплодотворении

  • Основа – половой процесс

Комбинативная изменчивость - это полная неопределенность: мы не знаем, какие комбинации возникнут между генами при кроссинговере, не знаем, какие хромосомы образуются и в какие гаметы они разойдутся, и, наконец, не знаем какие половые клетки (гаметы) встретятся при оплодотворении. То, что мы отличаемся от своих родителей, и есть результат этих неопределенностей.

Мутационная изменчивость связана с возникновением мутаций.

Мутации (лат. mutatio - изменение) - внезапные, возникающие спонтанно или вызванные мутагенами наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

  1. Мутации - резкие спонтанные изменения генотипа

  2. Стойкие, передаются потомкам через половые клетки (гаметы)

  3. Ненаправленные. Большинство мутаций - вредные (часть из них летальные), лишь очень небольшая часть носит полезный приспособительный характер, мутации также могут быть безразличными (нейтральными) для организма

  4. Носят индивидуальный характер

Среди мутаций различают следующие виды:

Генные (точечные)

Изменения при генных мутациях происходят в последовательности нуклеотидов молекулы ДНК. Может случаться такое, что один или несколько нуклеотидов выпадают из ДНК (делеция), вставляются новые нуклеотиды, удваиваются имеющиеся нуклеотиды (дупликация). Изменения ДНК ведут к тому, что в результате на рибосомах синтезируется белок с иной аминокислотной последовательностью. Новые аминокислоты могут поменять свойства белка, так что признак, за который он отвечает, будет меняться. (Альбинизм, гемофилия, дальтонизм, серповидно-клеточная анемия, полидактилия, синдром Марфана (поражение соединительной ткани, которое сопровождается высоким ростом, удлинением фаланг — «паучьи пальцы») и др)

Хромосомные

В результате хромосомных мутаций происходят структурные изменения хромосом (не следует путать с кроссинговером, который происходит в норме и подразумевает обмен участками между гомологичными хромосомами). Последствия хромосомных мутаций часто оказываются летальны.

В результате таких мутаций может происходить утрата (делеция) участка хромосомы, его удвоение (дупликация), поворот на 180° (инверсия), перенос участка одной хромосомы на другую (транслокация), перенос участка внутри одной хромосомы (транспозиция).

Геномные мутации

Данный тип мутаций проявляется в изменении числа хромосом. Выделяют:

Автополиплоидию - кратное увеличение числа наборов хромосом. В результате таких мутаций количество хромосом увеличивается в кратное количество раз (2,3,4 и т.д.). В результате получаются организмы триплоиды, тетраплоиды и т.д. Иногда такие мутации вызывают искусственно, к примеру, в селекции растений. Известно, что у полиплоидов более крупные и сочные плоды.

Аллополиплоидия - объединение в организме хромосомных наборов от разных видов или родов. Имеет значение в процессе видообразования. Примером данной мутации может послужить отдаленная гибридизация (аутбридинг) пшеницы и ржи. Их генотип состоит из гаплоидного набора пшеницы (n) и гаплоидного набора ржи (m). В результате такого скрещивания в 1875 году в Шотландии был получен первый искусственный стерильный гибрид - тритикале.Анеуплоидия - изменение кариотипа (совокупность признаков хромосом), при котором число хромосом в клетках не кратно гаплоидному набору (n). Таким образом, в результате анеуплоидии отсутствует одна (или несколько) хромосом, либо же хромосомы имеются в избытке ("лишние" хромосомы). В случае отсутствия в хромосомном наборе одной хромосомы говорят о моносомии, двух хромосом - нуллисомии. Если к паре хромосом добавляется одна лишняя, говорят о трисомии.

3) Онтогенетическая изменчивость отражает появление новых признаков в ходе индивидуального развития организма. Онтогенетической (или возрастной) изменчивостью называют закономерные изменения организма, произошедшие в ходе его онтогенеза — индивидуального развития в течение жизни. При онтогенетической изменчивости генотип остается неизменным. Поэтому такую изменчивость относят к ненаследственной. Однако все онтогенетические изменения предопределены наследственными свойствами (генотипом), которые часто изменяются в ходе онтогенеза (на стадии зиготы, деления, детерминации и дифференциации органов). В результате появляются новые свойства в генотипе. Это приближает онтогенетическую изменчивость к наследственной. Поэтому онтогенетическая изменчивость занимает промежуточное положение между наследственной и ненаследственной изменчивостью.